
Rob Scott, Google

Improving Network Efficiency with
Topology Aware Routing

@robertjscott

Outline

● Background

● Our first attempt

● Limitations

● Trying again

● Simulation results

● Long term vision

Disclaimers

● Topology aware routing is hard to get right

● This talk attempts to show the thought process behind our
approach here

● Things could still change

Background

How it all works

EndpointSlice
Controller

PodService EndpointSlice

Kube-Proxy

iptables

iptables

-A KUBE-SVC-7PKYINUY4TAF2ZR4 -m statistic --mode random
 --probability 0.50000000000 -j KUBE-SEP-5FWDMO5BGH5HG6NF
-A KUBE-SVC-7PKYINUY4TAF2ZR4 -j KUBE-SEP-ZDPVNMFECRSHSEKA

● With iptables we rely on probabilities for load balancing.

● For a Service with 2 endpoints, the first endpoint will have a
50% chance of being chosen.

● If it is not chosen, the last endpoint has a 100% chance of
being chosen.

Key Issues

● Traffic is distributed randomly across all endpoints, regardless
of where it originates from

● In a 3 zone cluster, traffic is more likely to go to another zone
than to stay in the current zone

● Every instance of kube-proxy needs to keep track of every
endpoint in the cluster and manage iptables rules for them

● The larger a cluster gets, the more is required of kube-proxy
and iptables - slower updates + more latency

Constraints

● Kube-Proxy doesn't handle requests directly, just programs
iptables or ipvs.

○ Don't have visibility into request errors or timeouts.

○ Difficult to detect when an endpoint is overloaded.

● Kube-Proxy is deployed on each node, any significant
changes could be expensive.

○ Endpoint updates need to be sent to each node.

○ More advanced logic increases CPU util on each node.

Our First Attempt

TopologyKeys

● We added a new alpha field to Services - topologyKeys

● Allowed endless flexibility

● Specify arbitrary topology keys in any order

● Kube-Proxy only routes to endpoints with matching labels

● A * could be used to indicate that traffic should be routed
elsewhere if no labels matched

Examples

Require same zone or region
topologyKeys:

- "topology.kubernetes.io/zone"

- "topology.kubernetes.io/region"

Examples

Prefer same zone or region
topologyKeys:

- "topology.kubernetes.io/zone"

- "topology.kubernetes.io/region"

- "*"

Limitations

Complexity

● Most users wanted the same thing - traffic should stay as
close to where it originated from as possible.

● This approach required relatively complex configuration on
each Service to achieve that.

● All the logic lived in kube-proxy:

○ Extra processing on each node.

○ All endpoints still needed to be delivered to each node.

Difficult to Implement

● Ideally topology keys would be given more weight if they
appeared first

● This would be quite difficult to achieve without potentially
overloading endpoints

● At first we just filtered endpoints matching any labels in
topology keys

● If * was included in topology keys, all endpoints were
passed through

The Ideal

● Ideally we would:

○ Prioritize endpoints matching earlier labels in the list.

○ Avoid overloading endpoints.

○ Avoid sending traffic nowhere.

○ Make * behave more like a failover configuration.

● This was quite difficult to achieve with such a flexible API.

Trying Again

Goals

● Build consensus around a small set of topology labels that
will be clearly defined and officially supported.

● Develop a simple approach that covers most common use
cases as automatically as possible.

● Only deliver the endpoints closest to each instance of
kube-proxy to improve performance and scalability.

Goals

● Build consensus around a small set of topology labels that
will be clearly defined and officially supported.
○ KEP 1659: Standard Topology Labels

● Develop a simple approach that covers most common use
cases as automatically as possible.
○ KEP 2004: Topology Aware Routing

● Only deliver the endpoints closest to each instance of
kube-proxy to improve performance and scalability.
○ KEP 2030: EndpointSlice Subsetting

https://github.com/kubernetes/enhancements/tree/master/keps/sig-architecture/1659-standard-topology-labels
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2004-topology-aware-subsetting
https://github.com/kubernetes/enhancements/blob/master/keps/sig-network/2030-endpointslice-subsetting

Goals

● Build consensus around a small set of topology labels that
will be clearly defined and officially supported.
○ KEP 1659: Standard Topology Labels

● Develop a simple approach that covers most common use
cases as automatically as possible.
○ KEP 2004: Topology Aware Routing

● Only deliver the endpoints closest to each instance of
kube-proxy to improve performance and scalability.
○ KEP 2030: EndpointSlice Subsetting

https://github.com/kubernetes/enhancements/tree/master/keps/sig-architecture/1659-standard-topology-labels
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2004-topology-aware-subsetting
https://github.com/kubernetes/enhancements/blob/master/keps/sig-network/2030-endpointslice-subsetting

Standard Topology Labels

● Standardize on the following labels:

○ topology.kubernetes.io/region

○ topology.kubernetes.io/zone

● Region and Zone are hierarchical

● Zones can not spread across regions

● These labels should be considered immutable

● A third key may be introduced in the future

Goals

● Build consensus around a small set of topology labels that
will be clearly defined and officially supported.
○ KEP 1659: Standard Topology Labels

● Develop a simple approach that covers most common use
cases as automatically as possible.
○ KEP 2004: Topology Aware Routing

● Only deliver the endpoints closest to each instance of
kube-proxy to improve performance and scalability.
○ KEP 2030: EndpointSlice Subsetting

https://github.com/kubernetes/enhancements/tree/master/keps/sig-architecture/1659-standard-topology-labels
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2004-topology-aware-subsetting
https://github.com/kubernetes/enhancements/blob/master/keps/sig-network/2030-endpointslice-subsetting

Simulating Algorithms

● An automated approach meant we needed a good
algorithm.

● We created a project to simulate the performance of
different algorithms when run with millions of different inputs.

○ googleinterns/k8s-topology-simulator

● Evaluated 6 different algorithms, and found one that had
the right combination of simplicity and performance

https://github.com/googleinterns/k8s-topology-simulator

The Algorithm

Once a Service has enough endpoints, subset the
EndpointSlices by zone. If a zone doesn't have enough
endpoints, contribute some from a zone that does.

The Algorithm

Once a Service has enough endpoints, subset the
EndpointSlices by zone. If a zone doesn't have enough
endpoints, contribute some from a zone that does.

● Below a certain threshold, this approach results in a lot of churn and
potential for overloaded endpoints

● Our testing showed that 3x the number of zones was a reasonable
starting point

● We add padding on either side to prevent flapping between
approaches

The Algorithm

Once a Service has enough endpoints, subset the
EndpointSlices by zone. If a zone doesn't have enough
endpoints, contribute some from a zone that does.

● We're introducing a new endpointslice.kubernetes.io/for-zone
label that can be set on EndpointSlices.

● Kube-Proxy will be updated to only watch EndpointSlices where that
label is not set or matches their current zone.

The Algorithm

Once a Service has enough endpoints, subset the
EndpointSlices by zone. If a zone doesn't have enough
endpoints, contribute some from a zone that does.

● Number of expected endpoints is based on the proportion of CPU
cores in a zone.

Total Number of
Endpoints:

12

CPU Cores Expected Endpoints

zone-a 3 6

zone-b 2 4

zone-c 1 2

The Algorithm

Once a Service has enough endpoints, subset the
EndpointSlices by zone. If a zone doesn't have enough
endpoints, contribute some from a zone that does.

● To minimize churn, we only redistribute endpoints after a threshold has
been passed

● We define an acceptable overload threshold, maybe 25%

● If we expected 10 endpoints in a zone:

○ 8 endpoints would be acceptable (10/8 => 25% overloaded)

○ 7 endpoints would not be (10/7 => 43% overloaded)

Example

Zone A

A

Zone B

B

Zone C

C

Original

For: All Zones

EndpointSlicesPods

Auto

For: Zone A

For: Zone B

For: Zone C
C

A A A

A A A

A
B B

B B

B C C

A A A

B B B

C C A

Goals

● Build consensus around a small set of topology labels that
will be clearly defined and officially supported.
○ KEP 1659: Standard Topology Labels

● Develop a simple approach that covers most common use
cases as automatically as possible.
○ KEP 2004: Topology Aware Routing

● Only deliver the endpoints closest to each instance of
kube-proxy to improve performance and scalability.
○ KEP 2030: EndpointSlice Subsetting

https://github.com/kubernetes/enhancements/tree/master/keps/sig-architecture/1659-standard-topology-labels
https://github.com/kubernetes/enhancements/tree/master/keps/sig-network/2004-topology-aware-subsetting
https://github.com/kubernetes/enhancements/blob/master/keps/sig-network/2030-endpointslice-subsetting

Delivering EndpointSlices

● EndpointSlices can be labeled with:

○ endpointslice.kubernetes.io/for-zone

○ endpointslice.kubernetes.io/for-region

● Kube-Proxy will be updated to watch EndpointSlices with a
matching zone or region

● For backwards compatibility, Kube-Proxy will continue to
watch EndpointSlices without any zone or region specified

Summary

● 2 official topology labels: zone and region

● EndpointSlices can be delivered to zones or regions

● Users can opt-in to automatic topology aware routing on
each Service

○ This will likely start as an annotation, may be expanded in
the future

Simulation Results

Evaluation Criteria

● Percent of traffic that stayed In-Zone (45%)

● Overload - the proportion of extra traffic that any single
endpoint might receive in a simulation

○ Max overload (20%)

○ Mean overload (20%)

● Proportion of new EndpointSlices required (15%)

Simulation Results

Auto Original

In-Zone Traffic 84.3% 38.8%

Overload 1.7% 0.0%

Extra Slices 36.9% 0.0%

Overall 86.7% 72.5%

Results from simulation of 39 million inputs for a 3 zone cluster.

Long Term Vision

In the next few months

● We need to test this in alpha and get feedback

○ Hopefully ready in Kubernetes 1.21

● Open questions:

○ How can we improve this approach?

○ Can we use a similar pattern for DNS?

○ What additional configuration will we need?

○ Can we eventually default to using this approach?

Longer term

● How can we implement topology aware routing with real
time feedback?

● Ideally we could detect overloaded endpoints and route
traffic elsewhere

● Can we do any of this redistribution of traffic without
updating EndpointSlices on each change?

Rob Scott, Google

Thanks!

@robertjscott

