
Laurent Bernaille

How the OOM-Killer Deleted my Namespace
(and Other Kubernetes Tales)

@lbernail

Datadog

Over 400 integrations
Over 1,500 employees
Over 12,000 customers
Runs on millions of hosts
Trillions of data points per day

10000s hosts in our infra
10s of k8s clusters with 100-4000 nodes
Multi-cloud
Very fast growth

@lbernail

Context

● We have shared a few stories already
○ Kubernetes the Very Hard Way
○ 10 Ways to Shoot Yourself in the Foot with Kubernetes
○ Kubernetes DNS horror stories

● The scale of our Kubernetes infra keeps growing
○ New scalability issues
○ But also, much more complex problems

How The OOM-killer Deleted my Namespace

@lbernail

"My namespace and everything in it are
completely gone"

Symptoms

@lbernail

Feb 17 14:30: Namespace and workloads deleted

Investigation

DeleteCollection calls by resource (audit logs)

@lbernail

Audit logs
● Delete calls for all resources in the namespace
● No delete call for the namespace resource

Why was the namespace deleted??

Investigation

@lbernail

Deletion call, 4d before

Audit logs for the namespace

Feb 13th (resource deletion happened on Feb 17th)

Successful namespace delete call, 4d
before workloads were deleted

@lbernail

Engineer did not delete the namespace

But engineer was migrating to new deployment method

@lbernail

Spinnaker deploys (v1)

chart

deploy kubectl apply

@lbernail

Helm 3 deploys (v2)

chart

deploy helm upgrade

@lbernail

Big difference

A

B

C

B'

C'

A

B

C

B'

C'

A

@lbernail

Big difference

A

B

C

B'

C'

A

B

C

B'

C'

A

A

B

C

B'

C'

A

B

C

B'

C'

@lbernail

Big difference

A

B

C

B'

C'

A

B

C

B'

C'

A

A

B

C

B'

C'

A

B

C

B'

C'

v2: removing a resource from the chart deletes it from the cluster

@lbernail

What happened?

1- Chart refactoring: move namespace out of it

2- Deployment: deletes namespace

But why did it take 4 days ?

@lbernail

Namespace Controller

Discover all API resources

Delete all resources in
namespace

@lbernail

Namespace Controller

=> If discovery fails, namespace content is not deleted

Kubernetes 1.14+: Delete as many resources as possible
Kubernetes 1.16+: Add Conditions to namespaces to surface errors

@lbernail

Namespace Controller logs

unable to retrieve the complete list of server APIs: metrics.k8s.io/v1beta1:
the server is currently unable to handle the request

Controller-manager contained many occurrences of

No context so hard to link with the incident but
● This is the error from the Discovery call
● We have a likely cause: metrics.k8s.io/v1beta1

@lbernail

metrics-server
● Additional controller providing node/pod metrics
● Registers an ApiService

○ Additional Kubernetes APIs
○ Managed by the external controller

Additional APIs (group and version)

Where should the apiserver proxy calls for this APIs

@lbernail

Events so far

● Feb 13th: namespace deletion call
● Feb 13-17th

○ Namespace controller can't discover metrics APIs
○ Namespace content is not deleted
○ At each sync, controller retries and fails

● Feb 17th
○ ?
○ Namespace controller is unblocked
○ Everything in the namespace is deleted

@lbernail

Events so far

● Feb 13th: error leads to namespace deletion call
● Feb 13-17th

○ Namespace controller can't discover metrics APIs
○ Namespace content is not deleted
○ At each sync, controller retries and fails

● Feb 17th
○ OOM-killer kills metrics-server and it is restarted
○ Metrics-server is now working fine
○ Namespace controller is unblocked
○ Everything in the namespace is deleted

@lbernail

Why was metrics-server failing?

@lbernail

Metrics-server setup

metrics-server

certificate
management

sidecar

pkill

Pod with two containers
● metrics-server
● sidecar: rotate server certificate, and signal metrics-server to reload

Requires shared pid namespace
● shareProcessNamespace (pod spec)
● PodShareProcessNamespace (feature gate on Kubelet and Apiserver)

@lbernail

Metrics-server deployment

metrics-server other controllers

coredns

Deployed on a pool of nodes dedicated to core controllers ("system")

@lbernail

Metrics-server deployment
"old" nodes

no PodShareProcessNamespace

Subset of nodes using an old image without PodShareProcessNamespace
● metrics-server: fine until it was rescheduled on an old node
● At this point, server certificate is no longer reloaded

recent nodes

metrics-server

@lbernail

Full chain of events
● Before Feb 13th

○ metrics-server scheduled on a "bad" node
○ controller discovery calls fail

● Feb 13th: error leads to namespace deletion call
● Feb 13-17th

○ Namespace controller can't discover metrics APIs
○ Namespace content is not deleted
○ At each sync, controller retries and fails

● Feb 17th
○ OOM-killer kills metrics-server and it is restarted
○ Metrics-server is now working fine (certificate up to date)
○ Namespace controller is unblocked
○ Everything in the namespace is deleted

@lbernail

Key take-away
● Apiservice extensions are great but can impact your cluster

○ If the API is not used, they can be down for days without impact
○ But some controllers need to discover all apis and will fail

● In addition, Apiservice extensions security is hard
○ If you are curious, go and see

New node image does not work
and it's Weird...

@lbernail

Context

● We build images for our Kubernetes nodes
● A small change pushed
● Nodes become NotReady after a few days
● Change completely unrelated to kubelet / runtime
● We can't promote to Prod

@lbernail

Investigation

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 OutOfDisk False KubeletHasSufficientDisk kubelet has sufficient disk space available
 MemoryPressure False KubeletHasSufficientMemory kubelet has sufficient memory available
 DiskPressure False KubeletHasNoDiskPressure kubelet has no disk pressure
 PIDPressure False KubeletHasSufficientPID kubelet has sufficient PID available
 Ready False KubeletNotReady container runtime is down

Node description

@lbernail

Runtime is down?

$ crictl pods
POD ID STATE NAME NAMESPACE
681bb3aec7fba Ready local-volume-provisioner-jtwzf local-volume-provisioner
53f122f351da2 Ready datadog-agent-qctt2-8ljgp datadog-agent
c1edb4f19713c Ready localusers-z26n9 prod-platform
01cf5cafd6bc9 Ready node-monitoring-ws2xf node-monitoring
39f01bdaade86 Ready kube2iam-zzdt6 kube2iam
3fcf520680a63 Ready kube-proxy-sr7tn kube-system
5ecd0966634f1 Ready node-local-dns-m2zbp coredns

Looks completely fine

Let's look at containerd

@lbernail

Kubelet logs

remote_runtime.go:434] Status from runtime service failed: rpc error: code = DeadlineExceeded desc =
context deadline exceeded

kubelet.go:2130] Container runtime sanity check failed: rpc error: code = DeadlineExceeded desc =
context deadline exceeded

kubelet.go:1803] skipping pod synchronization - [container runtime is down]

"Status from runtime service failed"
➢ Is there a CRI call for this?

Something is definitely wrong

@lbernail

Testing with crictl

● crictl has no "status" subcommand
● but "crictl info" looks close, let's check

@lbernail

Crictl info
$ crictl info
^C

● Hangs indefinitely
● But what does Status do?
● Almost nothing, except this

@lbernail

CNI status

● Really not much here right?
● But we have calls that hang and a lock
● Could this be related?

@lbernail

Containerd goroutine dump

containerd[737]: goroutine 107298383 [semacquire, 2 minutes]:
containerd[737]: goroutine 107290532 [semacquire, 4 minutes]:
containerd[737]: goroutine 107282673 [semacquire, 6 minutes]:
containerd[737]: goroutine 107274360 [semacquire, 8 minutes]:
containerd[737]: goroutine 107266554 [semacquire, 10 minutes]:

Blocked goroutines?

The runtime error from the kubelet also happens every 2mn

containerd[737]: goroutine 107298383 [semacquire, 2 minutes]:
...
containerd[737]: .../containerd/vendor/github.com/containerd/go-cni.(*libcni).Status()
containerd[737]: .../containerd/vendor/github.com/containerd/go-cni/cni.go:126
containerd[737]: .../containerd/vendor/github.com/containerd/cri/pkg/server.(*criService).Status(...)
containerd[737]: .../containerd/containerd/vendor/github.com/containerd/cri/pkg/server/status.go:45

Goroutine details match exactly the codepath we looked at

@lbernail

Seems CNI related
Let's bypass containerd/kubelet

$ ip netns add debug
$ CNI_PATH=/opt/cni/bin cnitool add pod-network /var/run/netns/debug

Works great and we even have connectivity

$ ip netns exec debug ping 8.8.8.8
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=111 time=2.41 ms
64 bytes from 8.8.8.8: icmp_seq=2 ttl=111 time=1.70 ms
64 bytes from 8.8.8.8: icmp_seq=3 ttl=111 time=1.76 ms
64 bytes from 8.8.8.8: icmp_seq=4 ttl=111 time=1.72 ms

@lbernail

What about Delete?

$ CNI_PATH=/opt/cni/bin cnitool del pod-network /var/run/netns/debug
^C

● hangs indefinitely
● and we can even find the original process still running
ps aux | grep cni
root 367 0.0 0.1 410280 8004 ? Sl 15:37 0:00
/opt/cni/bin/cni-ipvlan-vpc-k8s-unnumbered-ptp

@lbernail

CNI plugin

● On this cluster we use the Lyft CNI plugin
● The delete calls fails for cni-ipvlan-vpc-k8s-unnumbered-ptp
● After a few tests, we tracked the problem to this call

● Weird, this is in the netlink library!

@lbernail

The root cause

Many thanks to Daniel Borkmann!

@lbernail

Summary

● Packer configured to use the latest Ubuntu 18.04
● The default kernel changed from 4.15 to 5.4
● Netlink library had a bug for kernels 4.20+
● Bug only happened on pod deletion

@lbernail

Status

● Containerd
○ Status calls trigger config file reload, which acquires a RWLock on the config mutex
○ CNI Add/Del calls acquire a RLock on the mutex
○ If CNI Add/Del hangs, Status calls block
○ Does not impact containerd 1.4+ (separate fsnotify.Watcher to reload config)

● cni-ipvlan-vpc-k8s ("Lyft" CNI plugin)
○ Bug in Netlink library with kernel 4.20+
○ Does not impact cni-ipvlan-vpc-k8s 0.6.2+ (different function used)

@lbernail

Key take-away

Nodes are not abstract compute resources
● Kernel
● Distribution
● Hardware

Error messages can be misleading
● For CNI errors, runtime usually reports a clear error
● Here we had nothing but a timeout

How a single app can overwhelm the
control plane

@lbernail

Context

● Users report connectivity issue to a cluster
● Apiservers are not doing well

@lbernail

What's with the Apiservers?

Apiservers can't reach etcd

Apiservers crash/restart

@lbernail

Etcd?

Etcd memory usage is spiking

Etcd is oom-killed

@lbernail

What we know

● Cluster size has not significantly changed
● The control plane has not been updated
● So it is very likely related to api calls

@lbernail

Apiserver requests

Spikes in inflight requests

Spikes in list calls
(very expensive)

@lbernail

Why are list calls expensive?
Understanding Apiserver caching

apiserver

etcd

cache List + Watch

@lbernail

Why are list calls expensive?
What happens for GET/LIST calls?

apiserver

etcd

cache List + Watch

client storagehandler
GET/LIST RV=X

● Resources have versions (ResourceVersion, RV)
● For GET/LIST with RV=X

If cachedVersion >= X, return cachedVersion
else wait up to 3s, if cachedVersion>=X return cachedVersion

 else Error: "Too large resource version"
➢ RV=X: "at least as fresh as X"
➢ RV=0: current version in cache

@lbernail

Why are list calls expensive?
What about GET/LIST without a resourceVersion?

apiserver

etcd

cache List + Watch

client storagehandler
GET/LIST RV=""

● If RV is not set, apiserver performs a Quorum read against etcd (for consistency)
● This is the behavior of

○ kubectl get
○ client.CoreV1().Pods("").List() with default options (client-go)

@lbernail

Illustration

● Test on a large cluster with more than 30k pods
● Using table view ("application/json;as=Table;v=v1beta1;g=meta.k8s.io, application/json")

○ Only ~25MB of data to minimize transfer time (full JSON: ~1GB)

time curl 'https://cluster.dog/api/v1/pods'

real 0m4.631s

time curl 'https://cluster.dog/api/v1/pods?resourceVersion=0'

real 0m1.816s

https://kubernetes.chinook.us1.staging.dog/api/v1/pods
https://kubernetes.chinook.us1.staging.dog/api/v1/pods
https://kubernetes.chinook.us1.staging.dog/api/v1/pods?resourceVersion=0

@lbernail

What about label filters?

time curl 'https://cluster.dog/api/v1/pods?labelSelector=app=A'

real 0m3.658s

time curl 'https://cluster.dog/api/v1/pods?labelSelector=app=A&resourceVersion=0'

real 0m0.079s

● Call with RV="" is slightly faster (less data to send)
● Call with RV=0 is much much faster

> Filtering is performed on cached data

● When RV="", all pods are still retrieved from etcd and then filtered on apiservers

https://kubernetes.chinook.us1.staging.dog/api/v1/pods
https://kubernetes.chinook.us1.staging.dog/api/v1/pods
https://kubernetes.chinook.us1.staging.dog/api/v1/pods?resourceVersion=0
https://kubernetes.chinook.us1.staging.dog/api/v1/pods?resourceVersion=0

@lbernail

Why not filter in etcd?
etcd key structure

/registry/{resource type}/{namespace)/{resource name}

So we can ask etcd for:
● a specific resource
● all resources of a type in a namespace
● all resources of a type
● no other filtering / indexing

curl 'https://cluster.dog/api/v1/pods?labelSelector=app=A'
real 0m3.658s <== get all pods (30k) in etcd, filter on apiserver

curl 'https://cluster.dog/api/v1/namespaces/datadog/pods?labelSelector=app=A'
real 0m0.188s <== get pods from datadog namespace (1000) in etcd, filter on apiserver

curl 'https://cluster.dog/api/v1/namespaces/datadog/pods?labelSelector=app=A&resourceVersion=0'
real 0m0.058s <== get pods from datadog namespace in apiserver cache, filter

https://kubernetes.chinook.us1.staging.dog/api/v1/pods
https://kubernetes.chinook.us1.staging.dog/api/v1/pods
https://kubernetes.chinook.us1.staging.dog/api/v1/pods

@lbernail

Informers instead of List
How do informers work?

apiserver

etcd

cache List + Watch

Informer storagehandler

1- LIST RV=0
2- WATCH RV=X

● Informers are much better because
○ They maintain a local cache, updated on changes
○ They start with a LIST using RV=0 to get data from the cache

● Edge case
○ Disconnections: can trigger a new LIST with RV="" (to avoid getting back in time)
○ Kubernetes 1.20 will have EfficientWatchResumption (alpha)

https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/1904-efficient-watch-resumption

https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/1904-efficient-watch-resumption

@lbernail

Summary

● LIST calls go to etcd by default and can have a huge impact
● LIST calls with label filters still retrieve everything from etcd
● Avoid LIST, use Informers

● kubectl get uses LIST with RV=""
● kubectl get could allow setting RV=0

○ Much faster: better user experience
○ Much better for etcd and apiservers
○ Trade-off: small inconsistency window

Many, many thanks to Wojtek-t for his help getting all this right

@lbernail

Back to the incident

● We know the problem comes from LIST calls
● What application is issuing these calls?

@lbernail

Audit logs
Cumulated query time by user for list calls

A single user accounts for 2+ days of query time over 20 minutes!

@lbernail

Audit logs
Cumulated query time by user for list/get calls over a week

@lbernail

Nodegroup controller?

● An in-house controller to manage pools of nodes
● Used extensively for 2 years
● But recent upgrade deployed: deletion protection

○ Check if pods are running on pool of nodes
○ Deny nodegroup deletion if it is the case

@lbernail

How did it work?

On nodegroup delete
1. List all nodes in this nodegroup based on labels

=> Some groups have 100+ nodes

2. List all pods on each node filtering on bound node
=> List all pods (30k) for node
=> Performed in parallel for all nodes in the group
=> The bigger the nodegroup, the worse the impact

All LIST calls here retrieve full node/pod list from etcd

@lbernail

What we learned

● List calls are very dangerous
○ The volume of data can be very large
○ Filtering happens on the apiserver
○ Use Informers (whenever possible)

● Audit logs are extremely useful
○ Who did what when?
○ Which users are responsible for processing time

Conclusion

@lbernail

Conclusion

● Apiservice extensions are powerful but can harm your cluster

● Nodes are not abstract compute resources

● For large (1000+ nodes) clusters
○ Understanding Apiserver caching is important
○ Client interactions with Apiservers are critical
○ Avoid LIST calls

@lbernail

Thank you

We’re hiring!
https://www.datadoghq.com/careers/

laurent@datadoghq.com
@lbernail
@lbernail

