
© 2019 Ververica

Hands-On Stateful Serverless
with Apache Flink Stateful Functions

Seth Wiesman / @sjwiesman
Apache Flink Committer & Solutions Architect, Ververica

© 2019 Ververica

What does a Stream Processor have to
say about Serverless?

2

© 2019 Ververica

• Serverless architectures are an application of modern infrastructure capabilities
─ Rapid Scalability
─ Scale to Zero
─ Zero Downtime Upgrades

• Stateful Serverless is about bringing these advances to the application layer plus
─ Consistent durable state
─ Cloud native fault tolerance
─ Simple messaging between systems

• No service discovery
• Strong ordering guarantees between messages

What is Stateful Serverless

3

© 2019 Ververica

When the application handles messaging
and consistency . . .

4

© 2019 Ververica

When the application handles messaging
and consistency, the application becomes complex

5

© 2019 Ververica

What if the state layer handles messaging
and consistency?

6

© 2019 Ververica

Apache Flink Stateful Functions

7

Cloud Native

● Can be combined with capabilities of
modern serverless platforms (e.g. AWS
Lambda)

API Gateway

λλλ

Apache Flink StateFun
Cluster

event ingress event egress

(Micro)Service
Endpoint

K8s Service

f(x,s) f(x,s) f(x,s)

K8s deployment
(containerized functions)

FaaS

HTTP /
gRPC “Stateless” Operation

● State access / updates is part of the
invocations / responses

● Function deployments have benefits of
stateless processes - rapid scalability,
scale-to-zero, zero-downtime upgrades

An API that simplifies building distributed stateful applications
with a runtime build for serverless architectures.

© 2019 Ververica

• Serverless architectures are an application of modern infrastructure capabilities
─ Rapid Scalability
─ Scale to Zero
─ Zero Downtime Upgrades

• Stateful Serverless is about bringing these advances to the application layer plus
─ Consistent durable state
─ Cloud native fault tolerance
─ Simple messaging between systems

• No service discovery
• Strong ordering guarantees between messages

What is Stateful Serverless

8

© 2019 Ververica

What is Stateful Functions?

9

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)

Multi-language Support

Building block: Functions

● Small piece of logic that represents entities

● Invokable through messages

● Can be implemented in any
programming language that handles
HTTP requests or gRPC

● Inactive functions don’t consume resources

© 2019 Ververica

What is Stateful Functions?

10

Consistent state

Dynamic messaging

● Arbitrary communication between functions

● Functions message each other by logical
addresses - no service discovery needed

● Functions keep local state that is
persistent and integrated with messaging

● Out-of-box exactly-once state
access / updates & messaging

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)

f(a,b)

event ingress

event egress

© 2019 Ververica

What is Stateful Functions?

11

No Database Required

● Uses Flink’s distributed snapshots model for state
durability and fault tolerance

● Requires only a simple blob storage tier to
store state snapshots

f(a,b)

f(a,b)

f(a,b)

f(a,b)

mass storage
(S3, OSS, GCF, ECS,

HDFS, Azure Blobs, …)

f(a,b)

snapshot
state

event ingress

f(a,b)

event egress

© 2019 Ververica

Application Development Walkthrough

© 2019 Ververica

Types in Remote Functions

13

● Since remote functions may be implemented with any language that handles HTTP requests, functions
implemented with different languages may message each other arbitrarily

● All messages sent to / from remote functions are required to uniformly be the Protobuf Any type

○ Any messages wrap a Protobuf message in its serialized form, plus an URL describing the type
○ Receiving functions may “unpack” the Any messages they receive to specific types using their

language-specific Protobuf libraries

© 2019 Ververica

Types in Remote Functions

14

● The same goes for state types - they must be the Protobuf Any type

○ This allows state written by arbitrary languages to be uniformly maintained in Flink
○ Flink simply stores state in backends in their serialized form, as wrapped in the Any

● The Python SDK (for remote functions) provides utility methods to:

○ Pack / Unpack messages and state objects
○ Allows users to develop only against specific Protobuf types

© 2019 Ververica

Python SDK: Stateful Functions

15

def greet(context, input: GreetRequest):
name = context.address.identity

greeting = create_personalized_greeting(
name,
context,

)

context.pack_and_send(
"demo/email_sender",
input.reply_email,
greeting

)

with Python (remote function):

© 2019 Ververica

Python SDK: Stateful Functions

16

def greet(context, input: GreetRequest):
name = context.address.identity

greeting = create_personalized_greeting(
name,
context,

)

context.pack_and_send(
"demo/email_sender",
input.reply_email,
greeting

)

with Python (remote function): ● Each function instance is associated with
a function type + ID, together forming the
instance’s unique Address

© 2019 Ververica

Python SDK: Stateful Functions

17

def greet(context, input: GreetRequest):
name = context.address.identity

greeting = create_personalized_greeting(
name,
context,

)

context.pack_and_send(
"demo/email_sender",
input.reply_email,
greeting

)

● Automatically unpacks input messages as
specified Protobuf message type

with Python (remote function):

© 2019 Ververica

Python SDK: Stateful Functions

18

def greet(context, input: GreetRequest):
name = context.address.identity

greeting = create_personalized_greeting(
name,
context,

)

context.pack_and_send(
"demo/email_sender",
input.reply_email,
greeting

)

● Automatically unpacks input messages as
specified Protobuf message type

● pack_and_send packs output Protobuf
messages as Any before sending

with Python (remote function):

© 2019 Ververica

Python SDK: Stateful Functions

19

def greet(context, input: GreetRequest):
name = context.address.identity

greeting = create_personalized_greeting(
name,
context,

)

context.pack_and_send(
"demo/email_sender",
input.reply_email,
greeting

)

● Automatically unpacks input messages as
specified Protobuf message type

● pack_and_send packs output Protobuf
messages as Any before sending

● To invoke a function, simply send a
message to its address

● In the Python SDK, function types are
defined with strings, with the format:

"<namespace>/<name>"

with Python (remote function):

© 2019 Ververica

Python SDK: Persisted State

20

def create_personalized_greeting(name, context):
seen = context.state("seen-count").unpack(SeenCount)
if not seen:

seen = SeenCount()
seen.count = 1

else:
seen.count += 1

context.state("seen-count").pack(seen)

text = greetText(name, seen.count)
greeting = PersonalizedGreeting()
greeting.text = text
return greeting

with Python (remote function):

© 2019 Ververica

Python SDK: Persisted State

21

def create_personalized_greeting(name, context):
seen = context.state("seen-count").unpack(SeenCount)
if not seen:

seen = SeenCount()
seen.count = 1

else:
seen.count += 1

context.state("seen-count").pack(seen)

text = greetText(name, seen.count)
greeting = PersonalizedGreeting()
greeting.text = text
return greeting

● State is accessed / updated using the
invocation context

● Use unpack / pack to work against
specific Protobuf types

with Python (remote function):

© 2019 Ververica

Python SDK: Exposing Functions

22

functions = StatefulFunctions()

@functions.bind("demo/greet")
def greet(context, message: GreetRequest): // …

@functions.bind("demo/email_sender")
def sendEmail(context, message: PersonalizedGreeting): // ...

handler = RequestReplyHandler(functions)

app = Flask(__name__)

@app.route('/statefun', methods=['POST'])
def handle():

response_data = handler(request.data)
response = make_response(response_data)
return response

if __name__ == "__main__":
app.run()

© 2019 Ververica

Python SDK: Exposing Functions

23

functions = StatefulFunctions()

@functions.bind("demo/greet")
def greet(context, message: GreetRequest): // …

@functions.bind("demo/email_sender")
def sendEmail(context, message: PersonalizedGreeting): // ...

handler = RequestReplyHandler(functions)

app = Flask(__name__)

@app.route('/statefun', methods=['POST'])
def handle():

response_data = handler(request.data)
response = make_response(response_data)
return response

if __name__ == "__main__":
app.run()

● Bind multiple function types with their
function definition

© 2019 Ververica

Python SDK: Exposing Functions

24

functions = StatefulFunctions()

@functions.bind("demo/greet")
def greet(context, message: GreetRequest): // …

@functions.bind("demo/email_sender")
def sendEmail(context, message: PersonalizedGreeting): // ...

handler = RequestReplyHandler(functions)

app = Flask(__name__)

@app.route('/statefun', methods=['POST'])
def handle():

response_data = handler(request.data)
response = make_response(response_data)
return response

if __name__ == "__main__":
app.run()

● Bind multiple function types with their
function definition

● SDK ships a RequestReplyHandler
which:
○ dispatches invocation requests via

HTTP to bound functions
○ Ecodes their side effects (resulting

outgoing messages and state updates)
as an HTTP response

© 2019 Ververica

Python SDK: Exposing Functions

25

functions = StatefulFunctions()

@functions.bind("demo/greet")
def greet(context, message: GreetRequest): // …

@functions.bind("demo/email_sender")
def sendEmail(context, message: PersonalizedGreeting): // ...

handler = RequestReplyHandler(functions)

app = Flask(__name__)

@app.route('/statefun', methods=['POST'])
def handle():

response_data = handler(request.data)
response = make_response(response_data)
return response

if __name__ == "__main__":
app.run()

● Bind multiple function types with their
function definition

● SDK ships a RequestReplyHandler
which:
○ dispatches invocation requests via

HTTP to bound functions
○ Ecodes their side effects (resulting

outgoing messages and state updates)
as an HTTP response

● Expose the handler with your favorite
HTTP web framework

© 2019 Ververica

Fraud Detection

26

© 2019 Ververica

Thank You
@statefun_io @sjwiesman

