
Akihiro Suda (containerd / NTT)

Rootless Containers 2020



Akihiro Suda (containerd / NTT)

Rootless Containers 2020

Ask me questions at 
#2-kubecon-maintainer ( https://slack.cncf.io )

https://slack.cncf.io/


What is Rootless Containers?

• Running container runtimes (and also containers, of course) as a non-
root user on the host
• OCI (e.g. runc)
• CRI (e.g. containerd)
• CNI (e.g. Flannel)
• kubelet, dockerd, …

• Protects the host from potential vulnerabilities and misconfigurations

3



What is Rootless Containers?

Don’t be confused… The following stuffs are unrelated:

• .spec.securityContext.runAsUser (≈ docker run --user)

• UserNS KEP (≈ dockerd --userns-remap)

• usermod -aG docker foo

• Singularity with SETUID

4

https://github.com/kubernetes/enhancements/issues/127


Why do we need Rootless?

Most runtimes are designed to be secure by default, but they are still 
likely to have vulnerabilities

Identifier Component Description
CVE-2017-1002102 kubelet Files on the host could be removed
containerd#2001 (2018) containerd /tmp on the host could be removed
CVE-2018-11235 kubelet Arbitrary command could be executed on the host
runc#1962 (2019) runc Bare procfs was exposed with non-pivot rootfs mode
CVE-2019-5736 runc runc binary could be replaced with a malicious file
CVE-2019-11245 kubelet An image could be executed with an unexpected UID
CVE-2019-14271 dockerd A malicious NSS library could be loaded
… … …

And more!
5



Why do we need Rootless?

• People often make misconfigurations L

• Sets up insufficient PodSecurityPolicy / Gatekeeper policies

• Exposes system components’ TCP ports without mTLS

(e.g. etcd, kube-apiserver, kubelet, dockerd…)

• Exposes private keys as IaaS metadata (169.254.169.254)

• Uses same kubelet certs for all the nodes

• …

6



Why do we need Rootless?

• Rootless Containers can mitigate the impacts of such vulnerabilities 

and misconfiguration

• Even if the host gets compromised, the attacker won’t be able to:

• access files owned by other users

• modify firmware and kernel  (→ undetectable malware)

• ARP spoofing (→ DNS spoofing)

7



Not a panacea, of course…

Not effective against:

• Vulnerabilities of kernel and hardware

• DDoS attacks

• Cryptomining …

8



Not a panacea, of course…

Some caveats apply

• Network throughput is slowed down 

(But we are seeing HUGE improvements in 2020)

• No support for NFS and block storages

(But it doesn’t matter if you use managed DBs and object storages)

9



History

It began in c. 2012… But wasn’t popular until 2018-2019

Year Low layers High layers
2012 Kernel [officially in 2013]

2013 Semi-privileged networking with 
SETUID

LXC

2014
2015
2016 runc [officially in 2017]

2017

10



History

It began in c. 2012… But wasn’t popular until 2018-2019

Year Low layers High layers
2018 Unprivileged networking (slirp4netns)

Unprivileged FUSE-OverlayFS

BuildKit, based on containerd tech
Docker [officially in 2019] & containerd
Podman & CRI-O
Kubernetes [unofficial, still]

2019 Unprivileged cgroup v2 via systemd

Faster port forwarding (RootlessKit)
k3s

2020 Faster networking with seccomp addfd
2021+ Kubernetes, officially?

11



• https://get.docker.com/rootless

• Rootless mode was experimental in v19.03, will be GA in v20.10

• Other notables updates in v20.10 w.r.t. Rootless:

• Resource limitation with Cgroup v2

• FUSE-OverlayFS

• Improved installer 

Example: Docker

12

https://get.docker.com/rootless


Easy to install

Example: Docker

13

$ curl -fsSL https://get.docker.com/rootless | sh ⏎

$ export DOCKER_HOST=unix:///run/user/1000/docker.sock ⏎

$ docker run -d --name caddy -p 8080:80 caddy ⏎

$ curl http://localhost:8080 ⏎
...
<title>Caddy works!</title>
...

https://get.docker.com/rootless


All processes are running as a non-root user

Example: Docker

14

$ pstree user ⏎
sshd───bash───pstree

systemd─┬─(sd-pam)
├─containerd-shim─┬─caddy───7*[{caddy}]
│ └─12*[{containerd-shim}]
└─rootlesskit─┬─exe─┬─dockerd─┬─containerd───10*[{containerd}]

│ │ ├─rootlesskit-doc─┬─docker-proxy───6*[{docker-proxy}]
│ │ │ └─6*[{rootlesskit-doc}]
│ │ └─11*[{dockerd}]
│ └─11*[{exe}]
├─vpnkit───4*[{vpnkit}]
└─8*[{rootlesskit}]



• https://github.com/rootless-containers/usernetes

• Rootless Kubernetes distribution 

• Multi-node demo is provided as a Docker Compose stack

• CNI: Flannel (VXLAN)

Example: Usernetes

15

$ docker-compose up –d ⏎

$ kubectl get nodes ⏎
NAME STATUS ROLES AGE VERSION
node-containerd Ready <none> 3m46s v1.19.0-usernetes
node-crio Ready <none> 3m46s v1.19.0-usernetes

https://github.com/rootless-containers/usernetes


Example: Usernetes

16

$ docker exec usernetes_node-containerd_1 pstree user ⏎
journalctl---(sd-pam)

systemd-+-(sd-pam)
|-containerd-fuse---containerd-fuse---4*[{containerd-fuse}]
|-containerd.sh---containerd---10*[{containerd}]
|-flanneld.sh---flanneld---9*[{flanneld}]
|-nsenter.sh---kubelet---13*[{kubelet}]
|-nsenter.sh---kube-proxy---7*[{kube-proxy}]
`-rootlesskit.sh---rootlesskit-+-exe-+-rootlesskit.sh---sleep

| `-9*[{exe}]
|-slirp4netns
`-8*[{rootlesskit}]



Example: k3s

17

$ k3s server --rootless ⏎

$ k3s kubectl apply –f manifest.yaml ⏎

• https://k3s.io/

• CNCF Sandbox Project

• Focuses on edge computing

• Incorporates Usernetes patches for supporting rootless, ahead of the 

Kubernetes upstream

• Uses containerd as the CRI runtime

https://k3s.io/


Example: BuildKit

18

• https://github.com/moby/buildkit

• A container image builder, built on containerd technology

• Can be executed in several ways

• As a built-in feature of dockerd

• As a standalone daemon

• As a Kubernetes Pod

• As a Kubernetes Job, without a daemon Pod

• As a Tekton Task

https://github.com/moby/buildkit


No need to set securityContext.Privileged

But Seccomp and AppArmor constraints need to be relaxed

Example: BuildKit

19

spec:
containers:
- securityContext:

runAsUser: 1000
seccompProfile:

type: Unconfined

metadata:
annotations:

container.apparmor.security.beta.kubernetes.io/buildkitd: unconfined



How it works

• UserNS

• MountNS

• NetNS

• Cgroup

• New frontier: Seccomp User Notification

20



• Maps a non-root user (e.g. UID 1000) to a fake root user (UID 0)

• Not the real root, but enough to run containers

• Subordinate UIDs are mapped as well
( typically 65,536 UIDs, defined in /etc/subuid )

How it works: UserNS

21

Host

UserNS
0 1           65536     

0        1000          100000         165535    232



How it works: MountNS

• A non-root user can create MontNS along with UserNS

• But cannot mount most filesystems, except bind-mount, tmpfs, procfs, 
and sysfs...
• No Overlayfs (on vanilla kernel)
• No NFS
• No block storages

• FUSE is supported since kernel 4.18

• FUSE-OverlayFS can substitute real OverlayFS

22



• A non-root user can also create NetNS with UserNS

• But cannot create vEth pairs, i.e. No internet connectivity

• Slirp is used instead of vEth for unprivileged internet connectivity

• Slow (51.5Gbps → 9.21Gbps), but we are seeing huge improvements

NetNS

How it works: NetNS

23

TAP Kernelslirp4netns
Ethernet
packets

Socket
syscalls



How it works: Cgroup

• No support for cgroup v1

• i.e. no memory limit,  no CPU limit, no fork-bomb guard... 

• Cgroup v2 is almost fully supported

• Fedora has already switched the default to v2

• Other distros will follow in 2021-2022 ?

24



A new frontier in 2020:
Seccomp User Notification

• Kernel 5.0 merged the support for Seccomp User Notification: a new 
way to hook syscalls in the userspace

• Similar to ptrace, but less numbers of context switches

• Allows emulating subordinate UIDs without /etc/subuid

• POC: https://github.com/rootless-containers/subuidless

25

https://github.com/rootless-containers/subuidless


A new frontier in 2020:
Seccomp User Notification

• Kernel 5.9 merged the support for SECCOMP_IOCTL_NOTIF_ADDFD

• Allows injecting file descriptors from a host process into container 
processes

• e.g. replace sockfd on connect(2)

• No slirp overhead any more

• POC: https://github.com/rootless-containers/bypass4netns

26

https://github.com/rootless-containers/bypass4netns


Recap

• Rootless Containers can protect the host from potential vulnerabilities 
and misconfigurations

• Already adopted by lots of projects: BuildKit, Docker, containerd, 
Podman, CRI-O, k3s ...

• Being also proposed to the Kubernetes upstream

• There are some drawbacks, but being significantly improved using 
Seccomp User Notification

27



Resources

• Rootless Containers overview: https://rootlesscontaine.rs/

• Rootless containerd: 
https://github.com/containerd/containerd/blob/master/docs/rootless.md

• Rootless Docker: https://get.docker.com/rootless

• Usernetes: https://github.com/rootless-containers/usernetes

• Rootless KEP: https://github.com/kubernetes/enhancements/pull/1371

28

https://rootlesscontaine.rs/
https://github.com/containerd/containerd/blob/master/docs/rootless.md
https://get.docker.com/rootless
https://github.com/rootless-containers/usernetes
https://github.com/kubernetes/enhancements/pull/1371


Questions?

• Ask me questions at #2-kubecon-maintainer ( https://slack.cncf.io )

29

https://slack.cncf.io/



