
GitOps is Likely More Than
You Think it is

Kubecon
November 20, 2020

Cornelia Davis
CTO, Weaveworks

@cdavisafc ⬝ cornelia@weave.works

@cdavisafc

Developer (wasn’t Ops)

Web architectures for ~15 years

Cloud-native for nearly a decade

Cloud Foundry for 8+ years

Kubernetes for nearly 4

Me?

2

Discount code 35% off!: ctwkubecloud20

@cdavisafc

Go here → http://mng.bz/4BlV

https://www.manning.com/books/cloud-native-patterns
http://mng.bz/4BlV

GitOps - Cloud Native Agility and Reliability

GitOps is a set of modern best
practices for deploying and
managing cloud native infrastructure
and applications.

Based on our experience operating
a full cloud native stack

GitOps manages the whole stack:
• Cluster and application versioned

configuration
• Security and policy enforcement
• Monitoring and observability
• Continuous Deployment of

workloads

• Complete platform: Single platform
for infrastructure, core components
and applications.

• Productivity: Dramatically increase
deployments and faster feedback
and control loop,

• Reliability: Enables cluster and
application operator model with
standardised tooling.

• Compliance and Security: Enforces
standard security policy and an audit
trail

• Multi-cloud and on-premise: Deploy
a complete cluster from git with all
applications.

• All application deployments,
application operations and cluster
management operations under
one platform with a common
workflow.

Solution Benefits Vision

Observe

Orient

Deploy to
Kubernetes

Manage

Git Monitor

Act

Decide

@cdavisafc

So then, how do you GitOps?

@cdavisafc

Store code/config Automation

UX

Runtime Environment

@cdavisafc

Yes, but…

6

… details matter

How we do this relates directly to how many of the
benefits we enjoy

@cdavisafc
7

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code

@cdavisafc

Continuous Integration as Development Model

Continuous
Integration

● Iterative Process of Software
Build & Test

● Developers Control the Flow and
Process

● Delivers Higher Quality in
Shorter Times

● Well Known Tools and
Methodologies

● Well Supported Solutions: both
Commercial & Open Source

BuildBuild

GITIDE

Test

@cdavisafc

BUT Continuous Integration is NOT Continuous Delivery/Deployment

Test

Continuous
Integration &
Deployment

Application Deployment Should be
Separate from CI 

● Separation of Concerns:
Developers Release, Operators
Deploy

● Many deployment environments
● Recreating a deployment

shouldn’t require a new build
● …

Build

IDE

Deploy

GIT

@cdavisafc

Test

Continuous
Integration

Build

IDE DeployGIT

@cdavisafc

There is no CI/CD

There are CI and CD!

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code CD

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code CD

Dev

Stage

Prod

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code CD

Dev

Stage

Prod

CD

CD
PULL!!!

@cdavisafc

But then, how do we know when to pull?

We don’t have to!

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code CD

Dev

Stage

Prod

CD

CD

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code

@cdavisafc

So, this enables a bunch of additional
interesting patterns

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code

Drift detection and remediation

kubectl apply

@cdavisafc

CI

application
configuration

source
code

Image Update Automation

V1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: posts
 labels:
 app: posts
spec:
 replicas: 2
 selector:
 matchLabels:
 app: posts
 template:
 spec:
 containers:
 - name: posts
 image: myimage:0.0.1

V2

@cdavisafc

CI

application
configuration

source
code

Image Update Automation

V1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: posts
 labels:
 app: posts
spec:
 replicas: 2
 selector:
 matchLabels:
 app: posts
 template:
 spec:
 containers:
 - name: posts
 image: myimage:0.0.1

V2

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: posts
 labels:
 app: posts
spec:
 replicas: 2
 selector:
 matchLabels:
 app: posts
 template:
 spec:
 containers:
 - name: posts
 image: myimage:0.0.2

@cdavisafc

CI

application
configuration

source
code

Image Update Automation

V1

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: posts
 labels:
 app: posts
spec:
 replicas: 2
 selector:
 matchLabels:
 app: posts
 template:
 spec:
 containers:
 - name: posts
 image: myimage:0.0.1

V2

apiVersion: apps/v1beta1
kind: Deployment
metadata:
 name: posts
 labels:
 app: posts
spec:
 replicas: 2
 selector:
 matchLabels:
 app: posts
 template:
 spec:
 containers:
 - name: posts
 image: myimage:0.0.2

git push

@cdavisafc

CI

application
configuration

source
code

Image Update Automation

V1

V2

git push

git pull

@cdavisafc

CI

developer &
devops eng

application
configuration

source
code

Dev

Stage

Prod

Environment Customizations

@cdavisafc

CI

application
configuration

Dev

Stage

Prod

Environment Customizations

apiVersion:
kustomize.config.k8s.io/v1beta1
kind: Kustomization
resources:
- ./mydeployment.yaml

...
spec:
 replicas: 2

...
spec:
 replicas: 20

...
spec:
 replicas: 10

@cdavisafc

Build

GIT

Test

IDE Continuous
Integration Deploy

@cdavisafc

Git
Delivery

Controllers

Build

GIT

Test

IDE Continuous
Integration

Compiled
declarative state

Deploy

🧐❓

@cdavisafc

We are getting there…

@cdavisafc

… let’s look at one more pattern

@cdavisafc

CI

application
configuration

source
code

Recall… Image Update Automation

V1

V2

git push

git pull

@cdavisafc

CI

application
configuration

source
code

… this is only one half of the equation

V1

V2

git push

git pull

@cdavisafc

CI

application
configuration

source
code

… the other half gets things running

V1

V2

git push

git pull

@cdavisafc

And what if you wanted a different deployment strategy?

@cdavisafc

CI

application
configuration

source
code

… you guessed it

V1

V2

git push

git pull

@cdavisafc

Flagger

@cdavisafc

Release strategies
Flagger can run automated application analysis, promotion and rollback for the
following deployment strategies:

● Canary (progressive traffic shifting)
○ Istio, Linkerd, App Mesh, NGINX, Gloo

● A/B Testing (HTTP headers and cookies traffic routing)
○ Istio, NGINX

● Blue/Green (traffic switch)
○ Kubernetes CNI

https://github.com/weaveworks/flagger

https://github.com/weaveworks/flagger

@cdavisafc

Whew

@cdavisafc

CI

application
configuration

source
code

This is complicated…

V1

V2

git push

git pull

@cdavisafc

Delivery
Controllers

Runtime
Controllers

UX

Store code/config Automation Runtime Environment

41

GitOps

G
itO

ps
 R

un
tim

e
C

on
tro

lle
rs

Infra Controller
(Ignite)

K8s LCM Controller
(CAPEI)

K8s-infra Controllers
(service mesh, storage, LB, …)

Application Controllers
(Repl, DaemonSet, Flagger, …)

Add-on Controllers
(Monitoring, Logging, …)

G
itO

ps
 D

el
iv

er
y

C
on

tro
lle

rs

Source Controller

Helm Controller

Kustomize Controller

Image Automation Controller

Profiles Controller

GitOps Pipelines

@cdavisafc

Git
Delivery

Controllers

Build

GIT

Test

IDE Runtime
Controllers

Continuous
Integration

Deployment
(clusters, apps)

Monitoring
Logging

(Observability)

Management
(operations)

Compiled
declarative state

@cdavisafc

GitOps – An Operating Model for Cloud Native

Deployment
(clusters, apps)

Monitoring
Logging

(Observability)

Management
(operations)

Git

Build

GIT

Test

IDE

Unifying Deployment,
Monitoring and Management.

Git as the single source of truth
of a system’s desired state

ALL intended operations are
committed by pull request

ALL diffs between intended and
observed state with automatic
convergence

ALL changes are observable,
verifiable and auditable

“Immutability
Firewall”

GitOpsContinuous
Integration

@cdavisafc

GitOps
=

Continuous Delivery
+

Continuous Operations

@cdavisafc

The entire
system is
described

declaratively

The canonical
desired system

state is
versioned in git

Software agents
ensure

correctness and
perform actions
on divergence in

a closed loop

Approved
changes can be
automatically

applied
to the system

GitOps Principles

@cdavisafc

● CD is separate from CI

● Pull configuration

● Drift detection and remediation

● Image Update Automation

● Environment Customization

● Progressive Delivery

● …

GitOps Patterns Review

@cdavisafc

THANK YOU!

