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Act I: 🎶 It’s a dizzy merry go round 🎶

https://get-ytt.io/


Apple Confidential–Internal Use Only

…and Sometimes Feels Like Looking at This
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How can we make this landscape less daunting?

•Abstractions 

•Variants 

•Cross-cutting concerns
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Abstraction
Using CLIs for Configuration
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Variance
Using CLIs for Configuration
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Cross-Cutting Concerns
Using CLIs for Configuration
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Putting it all together
Combining Goals
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•Architecting your system 

• Continuous integration

Outcomes of Combining CLIs
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Templating YAML 
Composition

Domain-Specific 
Languages (DSL)

General Purpose 
Languages Controller-esque

ytt

Act II: 🎶 How do you measure, measure a [CLI]? 🎶

https://get-ytt.io/
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Helm, ytt
Templating

•Template accepts pre-defined input values 
• Input values expanded, producing output resources 
•Most common for defining Abstractions
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Helm, ytt
Templating Demo
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Templating
•  ✅ Pros 
-Simple to use — take a pre-packaged solution and run 
with it — helm install! 

-Simple to create — relatively mature field with lots of 
examples and prior art 

•  ❌ Cons 
- Limited ability to support long tail of low-level API 
options 

-Unable to natively compose opinions of multiple teams 
into a single template
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Kustomize
YAML Composition

•Express the system in the native APIs 
supported by the server — Deployment, 
Service, ConfigMap 

•Break out common YAML pieces into 
separate files 

•Break out varying pieces into separate 
files that can be applied for different 
environments

Kustomize
YAML Composition
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Chaining CLIs

Cross-CLI behaviors are possible and in fact, supported!

Abstraction Variance
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Kustomize
YAML Composition
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•  ✅ Pros 
-Highly customizable 
-Does not hide the underlying APIs that are used 

•  ❌ Cons 
- Static definitions — later layers do not self-reconfigure in response to 
changes in earlier layers. 

-Do not provide high-level definitions — only operate on native API 
types

YAML Composition
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Configuration Domain-Specific Languages (DSLs)

•Languages with a specific focus on 
solving configuration problems 

•Provide built-in solutions for compose 
and transforming configuration data 

•Often use either inheritance or 
unification as the primary mechanism 
for abstraction 

•Similar to YAML composition with 
dynamic logic and abstractions

DSL 
Interpreter

Cuelang, Isopod, JSonnet
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Cuelang, Isopod, JSonnet
Domain-Specific Languages (DSLs) Demo
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Domain-Specific Languages (DSLs)

•✅ Pros 
-One-stop-stop for Abstraction, Variance, Cross-Cutting Concerns 
-Powerful and expressive 

•  ❌ Cons 
-Different mental model than imperative general purpose languages 
-Need to be a standard — even just 2 different DSLs in an organization is too 
many and create problems 

•Tips 
-Avoid doing “clever” things that make the control flow hard to follow

Cuelang, Isopod, JSonnet
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Pulumi, kpt-sdk
General-Purpose Languages

•Use a general purpose programming language 
such as Python, TypeScript, Golang, etc to 
express your configuration 

•Familiar model for reusing libraries and 
developing modules 

•Express configuration in code rather than data 
•May be part of an all-in-one orchestration 
framework 

•Often able to ingest other sources of input — 
Helm, Kustomize, etc

Language Compiler 
+ Pulumi CLI
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General-Purpose Languages Demo
Pulumi, kpt-sdk
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General-Purpose Languages

•  ✅ Pros 
- Leverages existing libraries and tools for writing software that folks are already 
proficient in — e.g. IDEs, linters, testing libraries 

-May perform sophisticated and complex tasks outside of generating 
configuration — CICD, provisioning cloud infrastructure, etc 

-May ingest configuration from other sources and apply orchestration 
-  ❌ Cons 
- Evaluating complex programs for correctness can be difficult 
-Syntax of languages rarely optimized for defining configuration data vs DSLs 
-May have friction if using another orchestrator

Pulumi, kpt-sdk
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Controller-esque

•Model Kubernetes APIs — read input 
resources and modify them to match 
some desired outcomes 

•May read both input values and 
secondary values — e.g. both the 
“Golang Program” (high-level) and a 
“Deployment” low-level to turn into a 
Golang program

Function 1

Function 2

Kpt

Function 2
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Controller-esque Demo
Kpt
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Controller-esque

•  ✅ Pros 
-Similar capabilities to Kubernetes APIs themselves, but limited to configuration 
-Highly composable declarative format 

•  ❌ Cons 
-Can be more difficult to write modules using this approach than others — 
module must consider the full state of the system and be capable of changing it 
rather than generating new state 

-New and experimental — limited resources and best practices

Kpt
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Act III: 🎶 You could use a little flow 🎶

Abstraction Cross-cutting 
Abstraction Variance Familiar

Templating

YAML Composition

Domain-Specific 
Languages (DSL)

General Purpose 
Languages

Controller-esque
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🎶 I try to open up to what I don't know 🎶
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Thank you!
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