Five Hundred Twenty-five Thousand
Six Hundred K8s CLI's

Phil Wittrock @pwittrock
Gabbi Fisher @gabbifish

Actl: .- It's adizzy merry go round - .-

- -
Kpp

ytt kbld
I(W't I dustomize io 3 cruise-automat ion / isopod pU I U ml

https://get-ytt.io/

...and Sometimes Feels Like Looking at This

Database Streaming £ Messagng Agplication Daefinition & Image Buid Continucus Imegrason & Defivery

Seaw | Siywe =
DK
,’.‘:; . o~ clouderents
- " « melaoe m I
P .

Observability and Analysis

8 wans
)

S

Mages

B)

App Definition and Development

Ceardinason & Savice Ramote Procedure
Schaduling & Orehastration Discavery cal Senice Proxy API Gateway Service Mesh

ervay LINKERD

Orchestration &
Management

Clowd Naswe Storage Comaner Rantime Cloud Native Network

TR

3

Automasen & Configuration Comaner Regisary Security & Camplance Kay Managemens

How can we make this landscape less daunting?

eAbstractions

[

AENENE =

eCross-cutting concerns

Using CLIs for Configuration
Abstraction

Using CLIs for Configuration
Variance

Using CLIs for Configuration
Cross-Cutting Concerns

*)

(&3
'd ~ LY
/". \

~

& /
-

”~
/W
’

Putting it all together

Combining Goals

Outcomes of Combining CLIs

e Architecting your system

o Continuous integration

Actll: - - How do you measure, measure a [CLI]? - -

YAML Domain-Specific = General Purpose
Composition Languages (DSL) Languages

i
H’E'w NUIuMI K

Templating Controller-esque

E ustomize.io

[cruise-automation /isopod

ytt

https://get-ytt.io/

Templating
Helm, ytt

e femplate accepts pre-defined input values
e Input values expanded, producing output resources

e Most common for defining Abstractions

Templating Demo
Helm, ytt

Templating
« ¥ Pros

- Simple to use — take a pre-packaged solution and run
with it — helm install!

- Simple to create — relatively mature field with lots of
examples and prior art

. Cons

- Limited abillity to support long tail of low-level API
options

- Unable to natively compose opinions of multiple teams
Into a single template

YAML Composition
Kustomize

e EXpress the system in the native APIs
supported by the server — Deployment,
Service, ConfigMap

e Break out common YAML pieces into
separate files

e Break out varying pieces into separate
files that can be applied for different
environments

Chaining CLlIs

Abstraction Variance

Cross-CLI behaviors are possible and in fact, supported!

YAML Composition
Kustomize

YAML Composition

« ¥ Pros

- Highly customizable
- Does not hide the underlying APls that are used

. Cons

- Static definitions — later layers do not self-reconfigure in response to
changes In earlier layers.

- Do not provide high-level definitions — only operate on native API
types

Configuration Domain-Specific Languages (DSLs)
Cuelang, Isopod, JSonnet

« Languages with a specific focus on
solving configuration problems

e Provide built-in solutions for compose
and transforming configuration data

e« Often use either inheritance or
unification as the primary mechanism
for abstraction

e Similar to YAML composition with
dynamic logic and abstractions

Domain-Specific Languages (DSLs) Demo
Cuelang, Isopod, JSonnet

Domain-Specific Languages (DSLS)

Cuelang, Isopod, JSonnet

« ¥/ Pros
- One-stop-stop for Abstraction, Variance, Cross-Cutting Concerns
- Powerful and expressive

« . Cons

- Different mental model than imperative general purpose languages

- Need to be a standard — even just 2 different DSLs in an organization iIs too
many and create problems

e TIPS

- Avoid doing “clever” things that make the control flow hard to follow

General-Purpose Languages
Pulumi, kpt-sdk

e Use a general purpose programming language
such as Python, TypeScript, Golang, etc to
express your configuration

« Familiar model for reusing libraries and
developing modules

« EXpress configuration in code rather than data

 May be part of an all-in-one orchestration
framework

e Often able to ingest other sources of input —
Helm, Kustomize, etc

General-Purpose Languages Demo
Pulumi, kpt-sdk

General-Purpose Languages
Pulumi, kpt-sdk
« ¥ Pros

- Leverages existing libraries and tools for writing software that folks are already
proficient in — e.qg. IDEs, linters, testing libraries

- May perform sophisticated and complex tasks outside of generating
configuration — CICD, provisioning cloud infrastructure, etc

- May Ingest configuration from other sources and apply orchestration

- Cons

- Evaluating complex programs for correctness can be difficult
- Syntax of languages rarely optimized for defining configuration data vs DSLs

- May have friction If using another orchestrator

Controller-esque
Kpt

 Model Kubernetes APlIs — read input
resources and modify them to match
some desired outcomes

« May read both input values and
secondary values — e.g. both the
“"Golang Program” (high-level) and a
"Deployment” low-level to turn into a
Golang program

Controller-esque Demo
Kpt

Controller-esque
Kpt

« ¥ Pros

- Similar capabillities to Kubernetes APIs themselves, but limited to configuration

- Highly composable declarative format

. Cons

- Can be more difficult to write modules using this approach than others —
module must consider the full state of the system and be capable of changing it
rather than generating new state

- New and experimental — limited resources and best practices

Abstraction

Templating

Cross-cutting
Abstraction

Actlll: .- You could use a little flow - -

Variance

Familiar

YAML Composition

Domain-Specific
Languages (DSL)

General Purpose
Languages

Controller-esque

' 1try to open up to what | don't know - .-

Thank you!

We're Hiring
Stop by the Apple Booth

TM and © 2020 Apple Inc. All rights reserved.

