
Apple Confidential–Internal Use Only

Phil Wittrock @pwittrock
Gabbi Fisher @gabbifish

Five Hundred Twenty-five Thousand
Six Hundred K8s CLI’s

Apple Confidential–Internal Use Only

ytt kbld kpp
kwt

Act I: 🎶 It’s a dizzy merry go round 🎶

https://get-ytt.io/

Apple Confidential–Internal Use Only

…and Sometimes Feels Like Looking at This

Apple Confidential–Internal Use Only

How can we make this landscape less daunting?

•Abstractions

•Variants

•Cross-cutting concerns

Apple Confidential–Internal Use Only

Abstraction
Using CLIs for Configuration

Apple Confidential–Internal Use Only

Variance
Using CLIs for Configuration

Apple Confidential–Internal Use Only

Cross-Cutting Concerns
Using CLIs for Configuration

Apple Confidential–Internal Use Only

Putting it all together
Combining Goals

Apple Confidential–Internal Use Only

•Architecting your system

• Continuous integration

Outcomes of Combining CLIs

Apple Confidential–Internal Use Only

Templating YAML
Composition

Domain-Specific
Languages (DSL)

General Purpose
Languages Controller-esque

ytt

Act II: 🎶 How do you measure, measure a [CLI]? 🎶

https://get-ytt.io/

Apple Confidential–Internal Use Only

Helm, ytt
Templating

•Template accepts pre-defined input values
• Input values expanded, producing output resources
•Most common for defining Abstractions

Apple Confidential–Internal Use Only

Helm, ytt
Templating Demo

Apple Confidential–Internal Use Only

Templating
• ✅ Pros
-Simple to use — take a pre-packaged solution and run
with it — helm install!

-Simple to create — relatively mature field with lots of
examples and prior art

• ❌ Cons
- Limited ability to support long tail of low-level API
options

-Unable to natively compose opinions of multiple teams
into a single template

Apple Confidential–Internal Use Only

Kustomize
YAML Composition

•Express the system in the native APIs
supported by the server — Deployment,
Service, ConfigMap

•Break out common YAML pieces into
separate files

•Break out varying pieces into separate
files that can be applied for different
environments

Kustomize
YAML Composition

Apple Confidential–Internal Use Only

Chaining CLIs

Cross-CLI behaviors are possible and in fact, supported!

Abstraction Variance

Apple Confidential–Internal Use Only

Kustomize
YAML Composition

Apple Confidential–Internal Use Only

• ✅ Pros
-Highly customizable
-Does not hide the underlying APIs that are used

• ❌ Cons
- Static definitions — later layers do not self-reconfigure in response to
changes in earlier layers.

-Do not provide high-level definitions — only operate on native API
types

YAML Composition

Apple Confidential–Internal Use Only

Configuration Domain-Specific Languages (DSLs)

•Languages with a specific focus on
solving configuration problems

•Provide built-in solutions for compose
and transforming configuration data

•Often use either inheritance or
unification as the primary mechanism
for abstraction

•Similar to YAML composition with
dynamic logic and abstractions

DSL
Interpreter

Cuelang, Isopod, JSonnet

Apple Confidential–Internal Use Only

Cuelang, Isopod, JSonnet
Domain-Specific Languages (DSLs) Demo

Apple Confidential–Internal Use Only

Domain-Specific Languages (DSLs)

•✅ Pros
-One-stop-stop for Abstraction, Variance, Cross-Cutting Concerns
-Powerful and expressive

• ❌ Cons
-Different mental model than imperative general purpose languages
-Need to be a standard — even just 2 different DSLs in an organization is too
many and create problems

•Tips
-Avoid doing “clever” things that make the control flow hard to follow

Cuelang, Isopod, JSonnet

Apple Confidential–Internal Use Only

Pulumi, kpt-sdk
General-Purpose Languages

•Use a general purpose programming language
such as Python, TypeScript, Golang, etc to
express your configuration

•Familiar model for reusing libraries and
developing modules

•Express configuration in code rather than data
•May be part of an all-in-one orchestration
framework

•Often able to ingest other sources of input —
Helm, Kustomize, etc

Language Compiler
+ Pulumi CLI

Apple Confidential–Internal Use Only

General-Purpose Languages Demo
Pulumi, kpt-sdk

Apple Confidential–Internal Use Only

General-Purpose Languages

• ✅ Pros
- Leverages existing libraries and tools for writing software that folks are already
proficient in — e.g. IDEs, linters, testing libraries

-May perform sophisticated and complex tasks outside of generating
configuration — CICD, provisioning cloud infrastructure, etc

-May ingest configuration from other sources and apply orchestration
- ❌ Cons
- Evaluating complex programs for correctness can be difficult
-Syntax of languages rarely optimized for defining configuration data vs DSLs
-May have friction if using another orchestrator

Pulumi, kpt-sdk

Apple Confidential–Internal Use Only

Controller-esque

•Model Kubernetes APIs — read input
resources and modify them to match
some desired outcomes

•May read both input values and
secondary values — e.g. both the
“Golang Program” (high-level) and a
“Deployment” low-level to turn into a
Golang program

Function 1

Function 2

Kpt

Function 2

Apple Confidential–Internal Use Only

Controller-esque Demo
Kpt

Apple Confidential–Internal Use Only

Controller-esque

• ✅ Pros
-Similar capabilities to Kubernetes APIs themselves, but limited to configuration
-Highly composable declarative format

• ❌ Cons
-Can be more difficult to write modules using this approach than others —
module must consider the full state of the system and be capable of changing it
rather than generating new state

-New and experimental — limited resources and best practices

Kpt

Apple Confidential–Internal Use Only

Act III: 🎶 You could use a little flow 🎶

Abstraction Cross-cutting
Abstraction Variance Familiar

Templating

YAML Composition

Domain-Specific
Languages (DSL)

General Purpose
Languages

Controller-esque

Apple Confidential–Internal Use Only

🎶 I try to open up to what I don't know 🎶

Apple Confidential–Internal Use Only

Thank you!

TM and © 2020 Apple Inc. All rights reserved.

We’re Hiring

Stop by the Apple Booth

