Enhancing Kubernetes Scheduler for Diverse Workloads in Large Clusters

Yuan Chen, Yan Xu @Apple

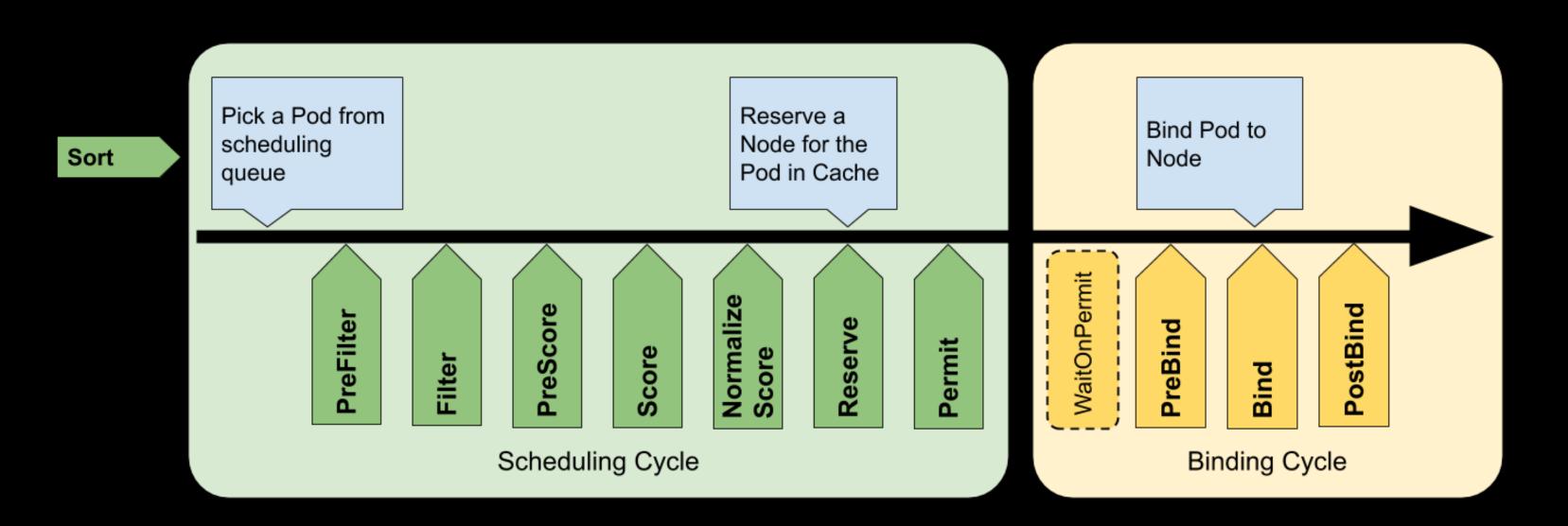
- Introduction
- Case studies
 - Scheduling for stateful apps.
 - Gang scheduling for batch jobs
 - Scalable scheduling in large clusters
- Summary

Vanilla Scheduler is Becoming Insufficient

- **K8s Scheduler**
- Stateless applications
- Pod by pod scheduling
- Simple scheduling logic
- "Optimal" strategy

- Stateful apps, batch jobs, ML/DL, HPC
- Advanced scheduling
- Scalable scheduling
- Custom scheduling

Diverse workloads in large clusters


Emerging Scheduling Requirements

- Support for stateful apps
- Gang scheduling
- Custom preemption
- Topology-awareness

- GPU bin-packing
- Resource interference/contention-aware
- Scalable scheduling
- Adaptive scheduling

Scheduling Framework

"Provides a uniform and configurable mechanism and APIs for extending the default scheduler through multiple extension points. The default scheduler and all plugins are compiled into a single scheduler, which allows many new and custom scheduling features to be implemented while keeping the scheduling "core" simple and maintainable."

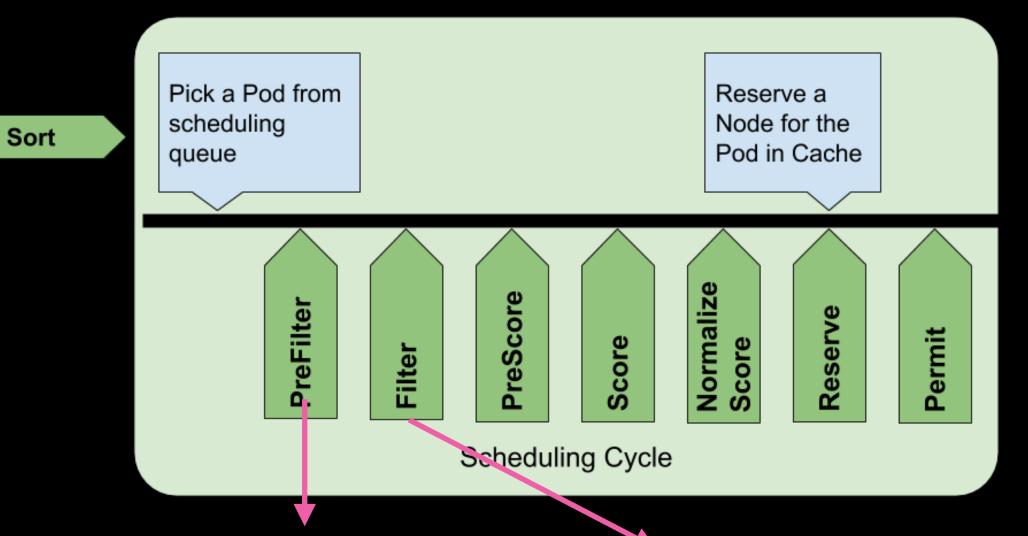
- Highly extensible and customizable
- Better performance and scalability
- Better handle errors
- No conflicts and race conditions

able lity

Comparison of Different Methods Extending the Vanilla scheduler

Methods	Implemenation	Extension Points	Compatibility	Overhead	Conflict	Performa
Ad-hoc	Modify the scheduler code	None	Low	Medium	No	High
Scheduler Extenders	A single scheduler with webhook extensions	Very limited: PostFilter, PostScore	High	Medium	No	Low
Multiple Schedulers	Multiple independent schedulers	Separate schedulers	Medium	High	Yes	Medium
Scheduling Framework	A single scheduler with lightweight plugins	Before and after each stage of a scheduling cycle	High	Low	No	High

ance


- Introduction
- Case studies
 - Scheduling for stateful apps.
 - Gang scheduling for batch jobs
 - Scalable scheduling in large clusters
- Summary

Case Study Scheduling for StatefulPod

- Fixed IP address for a Stateful Pod
- Scheduling
 - Track IP information
 - Check IP availability on a Node or Rack

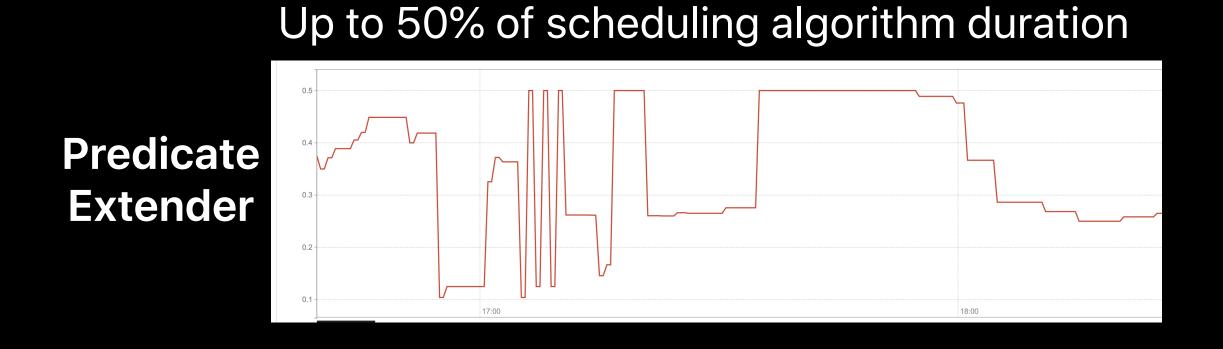
- Reschedule the Pod on the same Node or Rack with the assigned IP address

Static PScheduler Plugin **Custom PreFilter and Filter plugins**

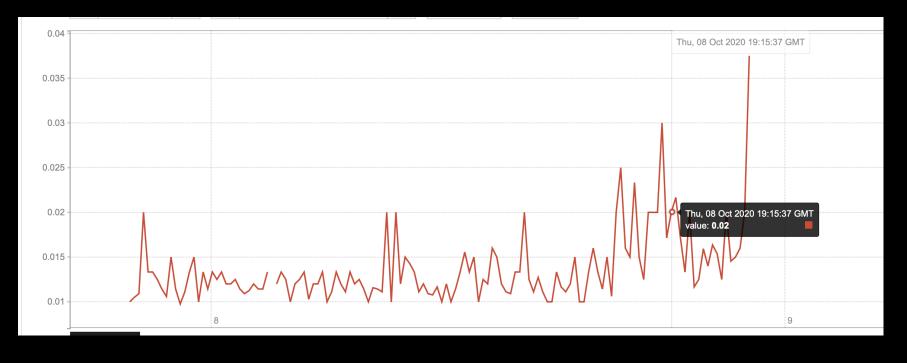
Sync up the IP reservation information and available IP count with the Node/Pod informer.

Check if the Pod is a stateful Pod and has an IP reservation or not.

For a regular Pod or a stateful Pod without reservation, check if the node has free IP addresses available.


For a stateful Pod with an IP reservation, check if the node has the reservation.

```
// Filter is a plugin that checks if the candidate Node has an IP
// reservation or free IPs for the Pod to be scheduled.
func (ss *staticIPScheduling) Filter(ctx context.Context, _ *framework.
CycleState, pod *v1.Pod, nodeInfo *nodeinfo.NodeInfo) *framework.Status
   si := ss.schedulerInfo
   nodeName := nodeInfo.Node().Name
   reservedNodeName, found := si.reservations[podToKey(pod)]
   // If the pod is a stateful pod with an IP reservation.
   if found {
       if reservedNodeName != nodeName {
            return framework.NewStatus(framework.UnschedulableAndUnreso
lvable, reservationFailureReason)
       return framework.NewStatus(framework.Success, "")
    // If the pod is a regular pod or a new stateful pod without reserv
ation.
    if si.ipsFree[nodeName].FreeIPs <= 0 {</pre>
       return framework.NewStatus(framework.UnschedulableAndUnresolvab
le, ipFailureReason)
   return framework.NewStatus(framework.Success, "")
```

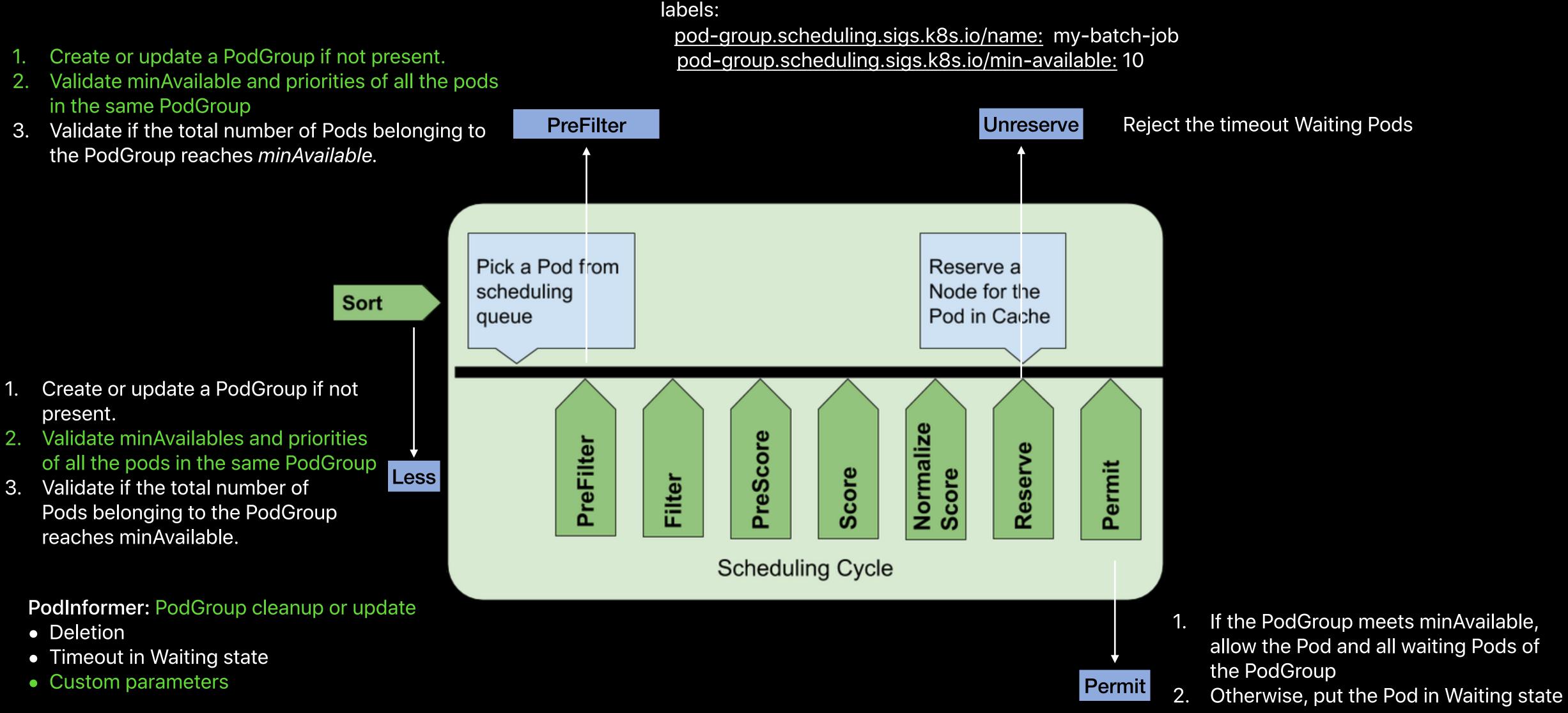

Compared with Scheduler Webhook Extenders

- Simplified implementation
- More robust and stable
- Easier to maintain and manage
- Better performance

Microbenchmark Performance Results

Up to 4% of the scheduling algorithm duration

FilterPlugin


Case Study Gang scheduling for batch jobs

- All or nothing scheduling
- Important for batch applications
 - Big data, e.g., Spark
 - Machine learning/deep learning

A lightweight coscheduling plugin

- Proposed by Qingcan Wang, et. al.
- Community collaboration: contributors from Alibaba, Apple, IBM, Tencent ...

Lightweight Coscheduling Plugins

Coscheduling Plugins

- Simple
- Support across jobs/deployments
- PodGroup update and cleanup
 - Monitor and update PodGroup status
 - Periodic cleanup
 - Customizable parameters
- Error check

https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/pkg/coscheduling

```
apiVersion: kubescheduler.config.k8s.io/v1beta1
kind: KubeSchedulerConfiguration
leaderElection:
  leaderElect: false
clientConnection:
  kubeconfig: "REPLACE_ME_WITH_KUBE_CONFIG_PATH"
profiles:
- schedulerName: default-scheduler
  plugins:
    queueSort:
      enabled:
        - name: Coscheduling
      disabled:
                "*"
        - name:
    preFilter:
      enabled:
        - name: Coscheduling
    permit:
      enabled:
        - name: Coscheduling
    reserve:
      enabled:
        - name: Coscheduling
# optional plugin configs
  pluginConfig:
  - name: Coscheduling
   args:
      permitWaitingTimeSeconds: 10
      podGroupGCIntervalSeconds: 30
podGroupExpirationTimeSeconds: 600
```

Coscheduling: Ongoing Work and Next Steps

- Coscheduling based on PodGroup CRD
- Custom preemption
- Reservation with backfill
- Rescheduling
- Generic sorting plugin

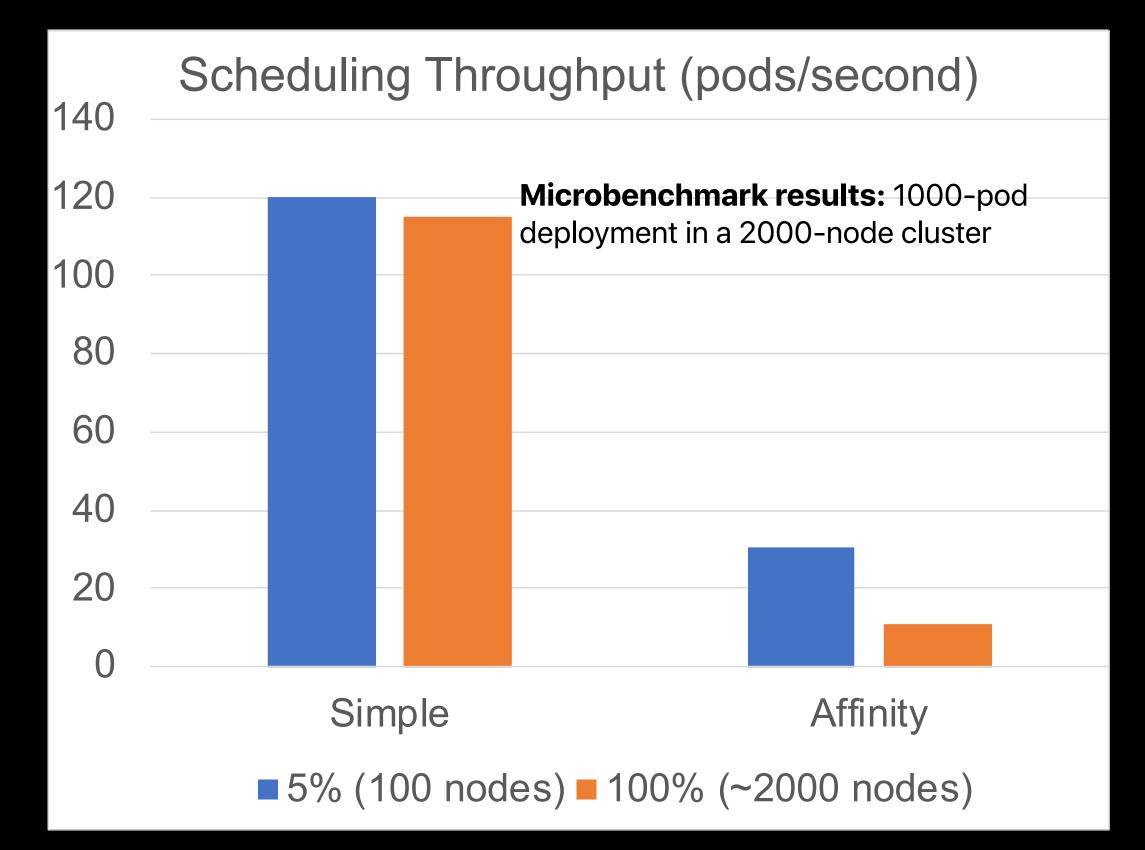
Refs

- 1. <u>https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/42-podgroup-coscheduling</u>
- 2. https://github.com/kubernetes-sigs/scheduler-plugins/issues/13

Case Study Scalable scheduling

- Large clusters
- Large jobs or services
- Auto-scaling

Performance limited by


- Pod by pod scheduling
- Choose the "optimal" placement

Proposals

- Custom parameters: balancing the scheduling quality and performance
- Group scoring: reuse scoring results and score a group of pods at a time

Custom Scheduler Parameters percentageOfNodesToScore

Impact on scheduling performance

Proposal for K8s 1.20: per-profile parameter

ApiVersion: kubescheduler.config.k8s.io/v1alpha2
kind: KubeSchedulerConfiguration

. . .

profiles

– schedulerName: batch-scheduler plugins:

percentageOfNodesToScore: 10

– schedulerName: service-scheduler plugins:

percentageOfNodesToScore: 50

- <u>https://github.com/kubernetes/kubernetes/issues/93270</u>
- <u>https://github.com/kubernetes/kubernetes/pull/95823</u>

Group Scoring

- Rank feasible Nodes against a single Pod.
- Assign top k scoring Nodes to k Pods.

Score a group of pods with identical resource requirements at the same time.

group and apply the top results to all or a subset of pods from the same pod group.

Scalable Scheduling Challenges

- Pod group as a scheduling unit
- Customize the scheduling flow logic
 - Filter: shortcut (e.g., the power of two choices)
 - Score: reuse the previous scoring results
- Tradeoff between simplicity and performance/features

Custom Scheduling with Multiple Profiles and Plugins An example policy file

```
profiles:
- schedulerName: default-scheduler
  plugins:
    queueSort:
      enabled:
        - name: Coscheduling
      disabled:
        - name: "*"
- schedulerName: stateful-scheduler
  plugins:
    queueSort:
      enabled:
        - name: Coscheduling
        disabled:
          - name:
                  "*"
    preFilter:
      enabled:
        - name: StaticIPScheduling
    filter:
      enabled:
        - name: StaticIPScheduling
```

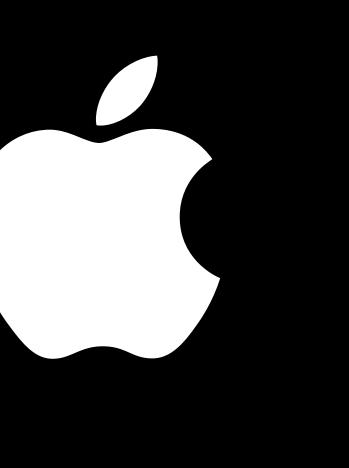
- schedulerName: gan plugins: queueSort: enabled: - name: Cosc disabled: - name: preFilter: enabled: - name: Cosc permit: enabled: - name: Cosc unreserve: enabled: - name: Cosc pluginConfig: - name: CoSchedu args: permitWaitin podGroupGCIn podGroupExpi percentageOfNodesT

ng-scheduler	- schedulerName: integrated-schedule			
	plugins:			
	queueSort:			
cheduling	enabled:			
	- name: Coscheduling			
	disabled:			
	- name: "*"			
	preFilter:			
cheduling	enabled:			
	- name: Coscheduling			
	- name: StaticIPScheduling			
cheduling	filter:			
	enabled:			
cheduling	- name: StaticIPScheduling			
	permit:			
ling	enabled:			
	- name: Coscheduling			
ngTimeSeconds: 10	unreserve:			
ntervalSeconds: 30	enabled:			
irationTimeSeconds: 600	- name: Coscheduling			
ToScore: 10	percentageOfNodesToScore: 50			

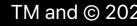
- Introduction
- Case studies
 - Scheduling for stateful apps.
 - Gang scheduling for batch jobs
 - Scalable scheduling in large clusters
- Summary

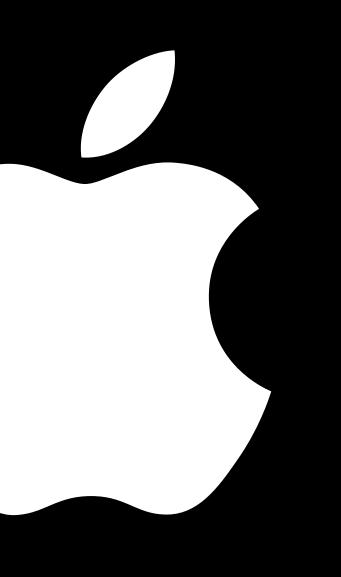
Summary

- There are increasing needs for improved and new features in Kubernetes scheduler.
- new scheduling features.
- New scheduling features are becoming available and under development.
- Community collaboration is the key!


Scheduler-plugins: <u>https://github.com/kubernetes-sigs/scheduler-plugins</u>

Kubernetes scheduling framework provides a flexible mechanism for developing


Acknowledgements


- Wei Huang (IBM)
- Qingcan Wang (Alibaba)
- Kai Zhang (Alibaba)
- Abdullah Gharaibeh (Google)
- Weidong Cai (Tencent)

App cncf@gro

- Apple Booth
- cncf@group.apple.com
 - We're Hiring

