
Enhancing Kubernetes Scheduler for
Diverse Workloads in Large Clusters

Yuan Chen, Yan Xu @Apple

Agenda

• Introduction
•Case studies
-Scheduling for stateful apps.
-Gang scheduling for batch jobs
-Scalable scheduling in large clusters

•Summary

Vanilla Scheduler is Becoming Insufficient

K8s Scheduler
•Stateless applications
•Pod by pod scheduling
•Simple scheduling logic
• “Optimal” strategy

Diverse workloads in large clusters
•Stateful apps, batch jobs, ML/DL, HPC
•Advanced scheduling
•Scalable scheduling
•Custom scheduling

Emerging Scheduling Requirements

•Support for stateful apps
•Gang scheduling
•Custom preemption
•Topology-awareness

•GPU bin-packing
•Resource interference/contention-aware
•Scalable scheduling
•Adaptive scheduling

…

Scheduling Framework

“Provides a uniform and configurable mechanism and APIs for extending the default scheduler through multiple extension
points. The default scheduler and all plugins are compiled into a single scheduler, which allows many new and custom
scheduling features to be implemented while keeping the scheduling "core" simple and maintainable.”

•Highly extensible and customizable

•Better performance and scalability

•Better handle errors

•No conflicts and race conditions

Extending the Vanilla scheduler
Comparison of Different Methods

Methods Implemenation Extension Points Compatibility Overhead Conflict Performance

Ad-hoc Modify the scheduler
code None Low Medium No High

Scheduler Extenders A single scheduler with
webhook extensions

Very limited: PostFilter,
PostScore High Medium No Low

Multiple Schedulers Multiple independent
schedulers Separate schedulers Medium High Yes Medium

Scheduling Framework A single scheduler with
lightweight plugins

Before and after each
stage of a scheduling
cycle

High Low No High

Agenda

• Introduction
•Case studies
-Scheduling for stateful apps.
-Gang scheduling for batch jobs
-Scalable scheduling in large clusters

•Summary

Scheduling for StatefulPod
Case Study

•Fixed IP address for a Stateful Pod
•Scheduling
-Track IP information
-Check IP availability on a Node or Rack
-Reschedule the Pod on the same Node or Rack with the assigned IP address

Custom PreFilter and Filter plugins
StaticIP Scheduler Plugin

Sync up the IP reservation
information and available IP count
with the Node/Pod informer.

Check if the Pod is a stateful Pod
and has an IP reservation or not.

For a regular Pod or a stateful Pod
without reservation, check if the
node has free IP addresses
available.

For a stateful Pod with an IP
reservation, check if the node has
the reservation.

Compared with Scheduler Webhook Extenders

•Simplified implementation
•More robust and stable
•Easier to maintain and manage
•Better performance

Up to 50% of scheduling algorithm duration

Predicate
Extender

FilterPlugin

Up to 4% of the scheduling algorithm duration

Microbenchmark Performance Results

Gang scheduling for batch jobs
Case Study

•All or nothing scheduling

• Important for batch applications
-Big data, e.g., Spark
-Machine learning/deep learning

A lightweight coscheduling plugin
-Proposed by Qingcan Wang, et. al.
-Community collaboration: contributors

from Alibaba, Apple, IBM, Tencent …

Lightweight Coscheduling Plugins
 labels:
 pod-group.scheduling.sigs.k8s.io/name: my-batch-job

pod-group.scheduling.sigs.k8s.io/min-available: 10

PodInformer: PodGroup cleanup or update
• Deletion
• Timeout in Waiting state
• Custom parameters

1. Create or update a PodGroup if not present.
2. Validate minAvailable and priorities of all the pods

in the same PodGroup
3. Validate if the total number of Pods belonging to

the PodGroup reaches minAvailable.
PreFilter

1. If the PodGroup meets minAvailable,
allow the Pod and all waiting Pods of
the PodGroup

2. Otherwise, put the Pod in Waiting state Permit

1. Create or update a PodGroup if not
present.

2. Validate minAvailables and priorities
of all the pods in the same PodGroup

3. Validate if the total number of
Pods belonging to the PodGroup
reaches minAvailable.

Less

Reject the timeout Waiting PodsUnreserve

http://pod-group.scheduling.sigs.k8s.io/name:
http://pod-group.scheduling.sigs.k8s.io/min-available:

Coscheduling Plugins

• Simple

• Support across jobs/deployments

• PodGroup update and cleanup
-Monitor and update PodGroup status
- Periodic cleanup
- Customizable parameters

• Error check

https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/pkg/coscheduling

Coscheduling: Ongoing Work and Next Steps

•Coscheduling based on PodGroup CRD
•Custom preemption
•Reservation with backfill
•Rescheduling
•Generic sorting plugin

Refs

1. https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/42-podgroup-coscheduling

2. https://github.com/kubernetes-sigs/scheduler-plugins/issues/13

https://github.com/kubernetes-sigs/scheduler-plugins/tree/master/kep/42-podgroup-coscheduling

Scalable scheduling
Case Study

• Large clusters

• Large jobs or services

• Auto-scaling

Performance limited by

• Pod by pod scheduling

• Choose the “optimal” placement

Proposals

• Custom parameters: balancing the
scheduling quality and performance

• Group scoring: reuse scoring results and
score a group of pods at a time

percentageOfNodesToScore
Custom Scheduler Parameters

Proposal for K8s 1.20: per-profile parameter

• https://github.com/kubernetes/kubernetes/issues/93270
• https://github.com/kubernetes/kubernetes/pull/95823

Impact on scheduling performance

0

20

40

60

80

100

120

140

Simple Affinity

Scheduling Throughput (pods/second)

5% (100 nodes) 100% (~2000 nodes)

Microbenchmark results: 1000-pod
deployment in a 2000-node cluster

https://github.com/kubernetes/kubernetes/issues/93270
https://github.com/kubernetes/kubernetes/pull/95823

Group Scoring

Score a group of pods with identical resource requirements at the same time.
•Rank feasible Nodes against a single Pod.
•Assign top k scoring Nodes to k Pods.

Sort the group of pods based
on priority and timestamp. All
pods from the same group are
sorted together.

Score and rank the feasible nodes for a single pod from a
group and apply the top results to all or a subset of pods from
the same pod group.GroupScore

ProdGroupSort

Scalable Scheduling Challenges

• Pod group as a scheduling unit
• Customize the scheduling flow logic

• Filter: shortcut (e.g., the power of two choices)
• Score: reuse the previous scoring results

• Tradeoff between simplicity and performance/features

Custom Scheduling with Multiple Profiles and Plugins
An example policy file

Agenda

• Introduction
•Case studies
-Scheduling for stateful apps.
-Gang scheduling for batch jobs
-Scalable scheduling in large clusters

•Summary

Summary

• There are increasing needs for improved and new features in Kubernetes
scheduler.

• Kubernetes scheduling framework provides a flexible mechanism for developing
new scheduling features.

• New scheduling features are becoming available and under development.
• Community collaboration is the key!

Scheduler-plugins: https://github.com/kubernetes-sigs/scheduler-plugins

Acknowledgements

•Wei Huang (IBM)
•Qingcan Wang (Alibaba)
•Kai Zhang (Alibaba)
•Abdullah Gharaibeh (Google)
•Weidong Cai (Tencent)


Apple Booth

cncf@group.apple.com

We’re Hiring

mailto:cncf@group.apple.com

TM and © 2020 Apple Inc. All rights reserved.

