
Jesse Suen (Intuit)
Danny Thomson (Stytch)

Eating Your Vegetables:
How to Manage 2.5 Million Lines of YAML

Jesse Suen
Principal Software Engineer, Intuit

Daniel Thomson
Software Engineer, Stytch

K8s YAML is very powerful, but hard

apiVersion: apps/v1
kind: Deployment
metadata:
 name: guestbook
spec:
 replicas: 3
 selector:
 ...
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - web
 topologyKey: "kubernetes.io/hostname"
 template:
 metadata:
 labels:
 app: web
 spec:
 containers:
 - name: app
 image: guestbook:1.0

Way too much YAML for everyone

What about multiple clusters

Considerations

Considerations - Personas

Operators
● Deploying off-the-shelf (OTS) software to run the platform
● Want controlled and stable upgrades, semantic versions

Developers
● Building bespoke applications as a service
● Focused on business logic, and less about platform
● Want to deploy early and often, don’t care about semantic versioning

Considerations - Developer Experience

● Experience and comfort level with Kubernetes
○ Highly specialized power users vs. zero interest
○ e.g. How do you achieve basic K8s use-cases:

■ anti affinity

● Affects how you expose the platform to the user
○ e.g. Abstraction v. RAW YAML

Considerations - Control

Centralized control
● Provide standard patterns and best practices
● Easier maintenance (e.g. upgrades, deprecated APIs)
● Security restrictions (e.g. creating ClusterRoles)

Developer control
● Self-service where it makes sense

○ onboarding to new environments (e.g. additional namespaces)
○ specifying HPA metrics
○ choosing a deployment strategy (e.g. rolling update, blue-green, canary)

● Leverage documentation and automation

Approaches

Approaches - Raw YAML

Advantages:
● Simple and straightforward
● Full flexibility
● Nothing to learn

Disadvantages:
● Zero configuration re-use (unmaintainable)

Just manage Kubernetes YAML

apiVersion: apps/v1
kind: Deployment
metadata:
 name: guestbook
spec:
 replicas: 3
 selector:
 matchLabels:
 app: guestbook
 template:
 metadata:
 labels:
 app: guestbook
 spec:
 containers:
 - image: guestbook:v1.0
 name: guestbook
 ports:
 - containerPort: 80

Approaches - Templating
Expose only the top level parameters to a template, which control the final output.

Advantages:
● Simpler configuration
● Flexible

Disadvantages:
● Need to parameterize everything
● Templates become complex and unreadable

Examples:
● helm, jsonnet

apiVersion: apps/v1
kind: Deployment
metadata:
 name: {{ include "guestbook.fullname" . }}
 labels:
 {{- include "guestbook.labels" . | nindent 4 }}
spec:
{{- if not .Values.autoscaling.enabled }}
 replicas: {{ .Values.replicaCount }}
{{- end }}
 selector:
 matchLabels:
 {{- include "guestbook.selectorLabels" . | nindent 6 }}
 template:
 metadata:
 {{- with .Values.podAnnotations }}
 annotations:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 labels:
 {{- include "guestbook.selectorLabels" . | nindent 8 }}
 spec:
 {{- with .Values.imagePullSecrets }}
 imagePullSecrets:
 {{- toYaml . | nindent 8 }}
 {{- end }}
 serviceAccountName: {{ include "guestbook.serviceAccountName" . }}
...
...

Approaches - Overlay
Overlaying defines a common “base” to share across variants.
Each variant only contains the configuration differences for that environment.

Advantages:
● Excellent readability
● Excellent configuration reuse
● Mostly flexible

Disadvantages:
● Not immediately intuitive
● Lack of parameterization makes many use cases harder

than necessary

Examples:
● kustomize, jsonnet

Advantages:
● Simpler configuration
● Can implement and control organizational standards

Disadvantages:
● Less flexibility
● Eventually end up with a leaky abstraction
● No one has figured out the right abstraction yet for

Kubernetes

Examples:
● pulumi, cdk8s, helm

Approaches - Abstraction
Hide the details from the user with an abstraction and simpler interface.

name: guestbook
type: WebService
dnsname: guestbook.intuit.com
image: guestbook:v1.0
updateStrategy: BlueGreen
replicas:
 min: 3
 max: 10
mesh:
 enabled: true

Approaches - Codify

Advantages:
● Leverage programming features

(e.g. loops, conditionals, functions)
● Tends to go hand-in-hand with abstraction,

including its benefits
● Can be tested

Disadvantages:
● Just another codebase with bugs
● Difficult to understand how code affects final

result

Examples:
● cdk8s, pulumi, jsonnet

import { Chart } from 'cdk8s';
import { Construct } from 'constructs';
import { WebService } from
'./lib/web-service' ;

export class MyChart extends Chart {
 constructor(scope: Construct, ns: string) {
 super(scope, ns);

 new WebService(this, guestbook, {
 image: guestbook:v1.0',
 replicas: 3
 });
 new WebService(this, 'redis', {
 image: 'redis',
 containerPort: 6379
 });
 }
}

Just use a programing language!

Intuit Case Study

Use Case & Requirements

Use Case
● 4,000 developers deploying SaaS applications
● Manage multiple environments

○ Namespace (qa, e2e, prd-use2, prd-usw2)
○ Mostly identical, with slight variations in config

(e.g. DNS names, AWS ARNs, IAM roles)
● DevOps culture: you build it, you run it

Requirements
● Provide standard set of patterns and best practices (paved road)
● Provide flexibility (even at the cost of simplicity)

○ Exposed developers to Kubernetes YAML
● GitOps friendly

Solution - Kustomize

● Preserves the full power of Kubernetes

● Kubernetes native, well supported and documented

● Readable for both developers & platform team

● Overlay pattern promotes config re-use maintainability

● Centrally control & distribute standard patterns across organization

Kustomize’s Killer Feature

Centrally Managed Remote Base
● A “catalog” of generic starter YAML
● Simple base consists of:

○ Deployment + Service + Ingress
● Advanced examples:

○ HPA, Canary Analysis
● Semantically versioned
● Provides standard patterns & best practices

○ (e.g. pod readiness gates, resource requests, ingress annotations)

Developer Owned Deployment Repository
● Derives from central remote base
● Customized for the needs for their service

Standard Ingress Example
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 alb.ingress.kubernetes.io/backend-protocol: HTTPS
 alb.ingress.kubernetes.io/load-balancer-attributes: access_logs.s3.enabled=false
 alb.ingress.kubernetes.io/certificate-arn: TODO:certificate-ARN
 alb.ingress.kubernetes.io/healthcheck-path: /health/full
 alb.ingress.kubernetes.io/healthcheck-protocol: HTTPS
 alb.ingress.kubernetes.io/listen-ports: '[{"HTTPS": 443}]'
 alb.ingress.kubernetes.io/scheme: internet-facing
 alb.ingress.kubernetes.io/security-groups: intuit-vpn-tcp-443
 alb.ingress.kubernetes.io/ssl-policy: ELBSecurityPolicy-TLS-1-2-2017-01
 alb.ingress.kubernetes.io/subnets: PublicSubnetAz1, PublicSubnetAz2, PublicSubnetAz3
 alb.ingress.kubernetes.io/healthcheck-interval-seconds: "60"
 kubernetes.io/ingress.class: aws-alb
 external-dns.alpha.kubernetes.io/hostname: TODO:albDnsHostname
 name: ingress
spec:
 rules:
 - http:
 paths:
 - backend:
 serviceName: service
 servicePort: 443
 path: /*

Deployment Repository

guestbook
├── app-base
│ ├── kustomization.yaml
│ ├── deployment-patch.yaml
│ └── ingress-patch.yaml
└── environments
 ├── e2e-usw2
 │ ├── kustomization.yaml
 │ ├── deployment-patch.yaml
 │ └── ingress-patch.yaml
 └── prd-usw2
 ├── kustomization.yaml
 ├── deployment-patch.yaml
 └── ingress-patch.yaml

● app-base directory inherits from central
remote base. contains the common
definitions for all environments of the
service.

● environments directories inherit from
the base, and only include changes
specific to the environment.

Deployment Repository

guestbook
├── app-base
│ ├── kustomization.yaml
│ ├── deployment-patch.yaml
│ └── ingress-patch.yaml
└── environments
 ├── e2e-usw2
 │ ├── kustomization.yaml
 │ ├── deployment-patch.yaml
 │ └── ingress-patch.yaml
 └── prd-usw2
 ├── kustomization.yaml
 ├── deployment-patch.yaml
 └── ingress-patch.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

namePrefix: guestbook-

resources:
- >
 https://github.intuit.com/dev-patterns/
 intuit-kustomize//intuit-service-base?ref=v4.0.0

patchesStrategicMerge:
- deployment-patch.yaml
- ingress-patch.yaml

Deployment Repository

guestbook
├── app-base
│ ├── kustomization.yaml
│ ├── deployment-patch.yaml
│ └── ingress-patch.yaml
└── environments
 ├── e2e-usw2
 │ ├── kustomization.yaml
 │ ├── deployment-patch.yaml
 │ └── ingress-patch.yaml
 └── prd-usw2
 ├── kustomization.yaml
 ├── deployment-patch.yaml
 └── ingress-patch.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

resources:
- ../../app-base

patchesStrategicMerge:
- deployment-patch.yaml
- ingress-patch.yaml

images:
- name: guestbook
 newTag: master-9f29eb5

Deployment Repository

guestbook
├── app-base
│ ├── kustomization.yaml
│ ├── deployment-patch.yaml
│ └── ingress-patch.yaml
└── environments
 ├── e2e-usw2
 │ ├── kustomization.yaml
 │ ├── deployment-patch.yaml
 │ └── ingress-patch.yaml
 └── prd-usw2
 ├── kustomization.yaml
 ├── deployment-patch.yaml
 └── ingress-patch.yaml

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 annotations:
 alb.ingress.kubernetes.io/certificate-arn: >
 arn:aws:acm:us-west-2:1234567890:certificate/
 da97886a-11e0-4665-b767-5d8f50713da6
 external-dns.alpha.kubernetes.io/hostname: >
 guestbook-prod.intuit.com
 name: ingress

Where are we now?

Single Environment

250
Environments

4
Services

2500
 Deployed YAML

= 2.5M
Base + (4 x environment overlays)

90 + (4 ✕ 45)

270
Services

2500
 Managed YAML

= 675K

✕ ✕

✕

Challenges

#1 User support
● Given a lot of foot guns
● Users will fall off the paved road

#2 Automation & migrations
● YAML is hard to “upgrade”
● Thousands of pull requests

#3 Kustomize
● Breaking behavior
● Lack of CRD support

Final Thoughts

● No perfect solution

● No one-size-fit-all, highly dependent on your organization

● At a certain scale, managing YAML is a lot of work

What’s next?

● Better abstractions

● UI assisted configuration management

Resources

● Declarative Application Management Whitepaper - Bryan Grant
● https://jobs.lexver.co/stytch

http://bit.ly/gitops-and-k8s

https://github.com/kubernetes/community/blob/master/contributors/design-proposals/architecture/declarative-application-management.md
https://jobs.lever.co/stytch
http://bit.ly/gitops-and-k8s

