
Design Patterns for Extensible,
Scalable K8s Extensions

Max Smythe (@maxsmythe, Google)

Rita Zhang (@ritazzhang, Microsoft)
Photo by JJ Ying on Unsplash

https://unsplash.com/@jjying?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pattern?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

OPA Gatekeeper

A customizable Kubernetes admission webhook that

helps enforce policies and strengthen governance

API Server Validating Webhook
Gatekeeper

Admission Request

Constraint
Require `billing` label

Constraint
Require `owner` label

Template
How to constrain labels

Constraint
Image repo must be

`company-x`

Template
How to constrain image

registry

Policy CRs

Policy is a Team Effort

● Gatekeeper: defines how policy looks and how it can be bound
○ "I care about managing and enforcing constraints and templates, not what's in them"

● Template authors: figure out how to implement common, generic checks
○ "I want to be able to restrict labels on resources. I don't care about which resources, which

labels or how this gets enforced"
● Cluster admins: figure out what checks they want to use

○ "I want to tell the system to restrict the `owner` label for objects in the `prod` namespace"

Duck Typing

Photo by DESIGNECOLOGIST on Unsplash

https://unsplash.com/@designecologist?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/rubber-duck?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Ducks + Constraints

● Duck typing was presented by
Matt Moore, Scott Nichols and
Ville Aikas at previous
Kubecons

● Abstracts common behaviors
into pluggable components:

○ policy binding
○ policy logic
○ violation response

● Allows template authors to
focus only on the thing they
want to test when writing
extensions to Kubernetes

● Admins see only a constraint
object

Configuration for
enforcement logic

Match criteria,
enforcement action

Constraint Schema

Constraint Template

Admission Request

Find matching
constraints

Apply logic from
constraint template to

find violated constraints

enforcementAction
tells G8r what to do
when a constraint is

violated

Universal Behavior

Request Flow

https://www.youtube.com/watch?v=Mb8c5SP-Sw0
https://www.youtube.com/watch?v=kldVg63Utuw

CRDs Creating CRDs == Hard

● Controllers must handle generic objects
○ Use unstructured resources
○ Deserialize pieces of the unstructured resource into Golang structs for strong schema

● Merge multiple JSON Sub-Schemas into different roots in resultant schema to
encourage duck typing and avoid collision

● Handling dynamic watches
○ Originally we did this by creating a "sub manager" that would restart every time the set of

watched resources changed
■ Inefficient memory usage because controller-runtime's watch cache was duplicated
■ Required finalizers to catch delete events missed due to submanager restart
■ Oren Shomron wrote a dynamic watcher, allows us to add/remove watches without

restarts or finalizers

https://github.com/open-policy-agent/gatekeeper/tree/v3.1.1/pkg/watch

Controller of Controllers

● Controllers must watch constraint templates and configs, adding and
removing watches as necessary

Main Controller
constraint template

Dynamic Controller
constraint

manage watches

Main Controller
config for sync

Dynamic Controller
sync

manage watches

registrar, err := watchManager.NewRegistrar("my-controller", eventsCh)
if err != nil {

return err
}

Example Registrar Usage

eventsCh is a channel that receives watch events to trigger reconcile loops

if err := registrar.AddWatch(gvk); err != nil {
return err

}

if err := registrar.RemoveWatch(gvk); err != nil {
return err

}

Registrars

● Registrars simplify writing multiple dynamic controllers
○ A registrar can be requested for each dynamic controller
○ Each registrar is namespaced to that controller so they are non-interacting
○ Each registrar is capable of adding, removing or replacing an intent to watch a GVK
○ The set of watched GVKs is the union of all intents across all registrars

● Adding a layer of indirection and namespacing intent allows both the sync and
constraint dynamic controllers to interact with the same watch manager
without worry

Going Full Meta

● Most config policy is looking at an object and giving a thumbs up or down
● Does this have to be done at admission time?
● Does it have to be against KRM-style resources?
● Not if you duck type... the decision process itself!

Constraint Framework: Full Meta

Configuration for
enforcement logic

Match criteria,
enforcement action

Constraint Schema

Constraint Template

Universal Behavior

Match Criteria Schema

Match Criteria Logic

What does the object
look like?

What metadata do I
have?

Target

How do I receive requests? How do I send a response?

What enforcement actions do
I know?

What response should I
send?

Enforcement Point

Real World Examples

● Gatekeeper uses the Constraint Framework, also...
● The gatekeeper-validate KPT function can be used to validate K8s configs at

rest or as part of a CI/CD pipeline
● Cloud Config Validator has been used to:

○ Validate GCP resources as part of a Forseti server deployment
○ Validate GCP resource snapshots at rest via CFT Scorecard
○ Validate Terraform plans using Terraform Validator

https://github.com/open-policy-agent/frameworks/tree/master/constraint
https://googlecontainertools.github.io/kpt/guides/consumer/function/catalog/validators/
https://github.com/forseti-security/config-validator
https://forsetisecurity.org/docs/latest/concepts/config-validator.html
https://github.com/GoogleCloudPlatform/cloud-foundation-toolkit/tree/master/cli
https://github.com/GoogleCloudPlatform/terraform-validator

The Webtroller

Photo by Vidar Nordli-Mathisen on Unsplash

https://unsplash.com/@vidarnm?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/web-troller?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Webhook + Controller == Webtroller

● Serve requests
● Must be responsive
● Downtime intolerant
● Availability scales with # of pods
● Capacity scales with # of pods
● Flat hierarchy

● Observe and reconcile resources
● Eventually consistent
● Downtime-tolerant
● Generally singletons
● Sometimes use leader election
● Recovery speed improved with multiple

pods

Webhooks Controllers

Webhook that serves results based off of observed resources

Gatekeeper

These Solutions are Fundamentally Incompatible?

Maybe, except...

● Idempotent processes don't need to be singletons
○ ex: All GK pods would have created the same constraint CRD from a template, just let them all

do it and the winner will succeed, the rest won't retry
● Write conflicts may lead to unnecessary traffic, but controllers only write when

they have changes

Leaderless Horizontal Scalability

● Multiple webhook pods all serving simultaneously
○ Relies on auto healing and multiple serving peers across failure domains for availability

● All pods will try to ingest a template and create a CRD, one will win
● All pods manage their own private cache of constraints/templates/data
● Non-idempotent operations, like audit, must run in a separate, singleton pod
● Avoid scaling write contention
● No side effects allowed from controllers

Okay, so multiple
pods... now what?

Profit?

Nope. People want to
know if policies are
enforced.

Eventual Consistency

● Multiple pods mean multiple enforcers that are eventually consistent
● Policy enforcement is only as strong as its weakest link
● If I have:

○ 3 webhook pods
○ 2 enforcing a new policy, 1 not
○ An API server that chooses its webhook host randomly

● That new policy has a 66% chance of being enforced by the webhook

Enforced Enforced Missing

API Server

byPod Status

● ID
○ uniquely identifies pod

● observedGeneration
○ lets us know which

version of the resource
that pod has seen

● operations
○ the Gatekeeper functions

being performed by this
pod

● templateUID
○ sanity check, in case a

template was deleted
and recreated

● errors
○ any errors ingesting the

template

status:
 byPod:
 - id: gatekeeper-audit-67dfc46db6-bc5zc
 observedGeneration: 1
 operations:
 - audit
 - status
 templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd
 - id: gatekeeper-controller-manager-7cbc758844-4v9tq
 observedGeneration: 1
 operations:
 - webhook
 templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd
 - id: gatekeeper-controller-manager-7cbc758844-l46b7
 observedGeneration: 1
 operations:
 - webhook
 templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd
 - id: gatekeeper-controller-manager-7cbc758844-m2szb
 observedGeneration: 1
 operations:
 - webhook
 templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd

Interpreting byPod Status

● If an entry is missing, assume the worst
● If deletion timestamp is set, assume the worst
● If you know you have 3 webhook pods, 3 status entries with the correct

observedGeneration means that the constraint is enforced for the
webhook

Implications on Infrastructure/Code/Design

● If we expect N pods, we must never have N + 1 pods
● Pods cannot serve until they have bootstrapped all initial constraints,

templates, and data
● The semantics of multi-pod resources must be such that a missing resource

can always be interpreted consistently (e.g. missing constraint => looser
enforcement)

○ This makes referential constraints potentially problematic

Implementation of byPod Status

● Each pod writes to its own ConstraintPodStatus &
ConstraintTemplatePodStatus resource

● These resources have an owner reference to the pod that writes to them
● A status controller copies pod statuses into the constraint/template

design doc

Pod ConstraintPodStatus

Pod ConstraintPodStatus

Pod ConstraintPodStatus

Status
Controller

Constraint

https://docs.google.com/document/d/13xmVQuE9Q8CFDpL9pzpoAyH1nIzHndP0OfccXVShiPo/edit

Fun, Mathy Side Analysis

● Increasing the number of webhook pods decreases the likelihood of webhook
unavailability

○ If there are N pods, 1 Pod is sufficient to serve all webhook traffic and each server has Pf
independent probability of being down, the probability that the whole system will fail is Pf

N

● It also increases the mean-time-to-enforcement for constraints/templates
○ If the probability for a single host ingesting a constraint by time t is P(t), then the probability

that all N hosts will have ingested that constraint is P(t)N, which makes longer ingestion times
more likely. Thanks Wikipedia.

https://en.wikipedia.org/wiki/Extreme_value_theory

API Server Validating Webhook
Gatekeeper

Admission Request

Constraint
Require `billing` label

Constraint
Require `owner` label

Template
How to constrain labels

Constraint
Image repo must be

`company-x`

Template
How to constrain image

registry

Policy CRs

Thank you

● Gatekeeper community
● Kubebuilder / controller-runtime
● Audience

