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OPA Gatekeeper

A customizable Kubernetes admission webhook that 

helps enforce policies and strengthen governance
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Policy is a Team Effort

● Gatekeeper: defines how policy looks and how it can be bound
○ "I care about managing and enforcing constraints and templates, not what's in them"

● Template authors: figure out how to implement common, generic checks
○ "I want to be able to restrict labels on resources. I don't care about which resources, which 

labels or how this gets enforced"
● Cluster admins: figure out what checks they want to use

○ "I want to tell the system to restrict the `owner` label for objects in the `prod` namespace"



Duck Typing
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Ducks + Constraints

● Duck typing was presented by 
Matt Moore, Scott Nichols and 
Ville Aikas at previous 
Kubecons

● Abstracts common behaviors 
into pluggable components:

○ policy binding
○ policy logic
○ violation response

● Allows template authors to 
focus only on the thing they 
want to test when writing 
extensions to Kubernetes

● Admins see only a constraint 
object
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https://www.youtube.com/watch?v=Mb8c5SP-Sw0
https://www.youtube.com/watch?v=kldVg63Utuw


CRDs Creating CRDs == Hard

● Controllers must handle generic objects
○ Use unstructured resources
○ Deserialize pieces of the unstructured resource into Golang structs for strong schema

● Merge multiple JSON Sub-Schemas into different roots in resultant schema to 
encourage duck typing and avoid collision

● Handling dynamic watches
○ Originally we did this by creating a "sub manager" that would restart every time the set of 

watched resources changed
■ Inefficient memory usage because controller-runtime's watch cache was duplicated
■ Required finalizers to catch delete events missed due to submanager restart
■ Oren Shomron wrote a dynamic watcher, allows us to add/remove watches without 

restarts or finalizers

https://github.com/open-policy-agent/gatekeeper/tree/v3.1.1/pkg/watch


Controller of Controllers

● Controllers must watch constraint templates and configs, adding and 
removing watches as necessary
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registrar, err := watchManager.NewRegistrar("my-controller", eventsCh)
if err != nil {

return err
}

Example Registrar Usage

eventsCh  is a channel that receives watch events to trigger reconcile loops

if err := registrar.AddWatch(gvk); err != nil {
return err

}

if err := registrar.RemoveWatch(gvk); err != nil {
return err

}



Registrars

● Registrars simplify writing multiple dynamic controllers
○ A registrar can be requested for each dynamic controller
○ Each registrar is namespaced to that controller so they are non-interacting
○ Each registrar is capable of adding, removing or replacing an intent to watch a GVK
○ The set of watched GVKs is the union of all intents across all registrars

● Adding a layer of indirection and namespacing intent allows both the sync and 
constraint dynamic controllers to interact with the same watch manager 
without worry



Going Full Meta

● Most config policy is looking at an object and giving a thumbs up or down
● Does this have to be done at admission time?
● Does it have to be against KRM-style resources?
● Not if you duck type... the decision process itself!



Constraint Framework: Full Meta
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Real World Examples

● Gatekeeper uses the Constraint Framework, also...
● The gatekeeper-validate KPT function can be used to validate K8s configs at 

rest or as part of a CI/CD pipeline
● Cloud Config Validator has been used to:

○ Validate GCP resources as part of a Forseti server deployment
○ Validate GCP resource snapshots at rest via CFT Scorecard
○ Validate Terraform plans using Terraform Validator

https://github.com/open-policy-agent/frameworks/tree/master/constraint
https://googlecontainertools.github.io/kpt/guides/consumer/function/catalog/validators/
https://github.com/forseti-security/config-validator
https://forsetisecurity.org/docs/latest/concepts/config-validator.html
https://github.com/GoogleCloudPlatform/cloud-foundation-toolkit/tree/master/cli
https://github.com/GoogleCloudPlatform/terraform-validator


The Webtroller

Photo by Vidar Nordli-Mathisen on Unsplash

https://unsplash.com/@vidarnm?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/web-troller?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText


Webhook + Controller == Webtroller

● Serve requests
● Must be responsive
● Downtime intolerant
● Availability scales with # of pods
● Capacity scales with # of pods
● Flat hierarchy

● Observe and reconcile resources
● Eventually consistent
● Downtime-tolerant
● Generally singletons
● Sometimes use leader election
● Recovery speed improved with multiple 

pods

Webhooks Controllers

Webhook that serves results based off of observed resources

Gatekeeper



These Solutions are Fundamentally Incompatible?

Maybe, except...

● Idempotent processes don't need to be singletons
○ ex: All GK pods would have created the same constraint CRD from a template, just let them all 

do it and the winner will succeed, the rest won't retry
● Write conflicts may lead to unnecessary traffic, but controllers only write when 

they have changes



Leaderless Horizontal Scalability

● Multiple webhook pods all serving simultaneously
○ Relies on auto healing and multiple serving peers across failure domains for availability

● All pods will try to ingest a template and create a CRD, one will win
● All pods manage their own private cache of constraints/templates/data
● Non-idempotent operations, like audit, must run in a separate, singleton pod
● Avoid scaling write contention
● No side effects allowed from controllers



Okay, so multiple 
pods... now what?



Profit?



Nope. People want to 
know if policies are 
enforced.



Eventual Consistency

● Multiple pods mean multiple enforcers that are eventually consistent
● Policy enforcement is only as strong as its weakest link
● If I have:

○ 3 webhook pods
○ 2 enforcing a new policy, 1 not
○ An API server that chooses its webhook host randomly

● That new policy has a 66% chance of being enforced by the webhook

Enforced Enforced Missing

API Server



byPod Status

● ID
○ uniquely identifies pod

● observedGeneration
○ lets us know which 

version of the resource 
that pod has seen

● operations
○ the Gatekeeper functions 

being performed by this 
pod

● templateUID
○ sanity check, in case a 

template was deleted 
and recreated

● errors
○ any errors ingesting the 

template

status:
  byPod:
  - id: gatekeeper-audit-67dfc46db6-bc5zc
    observedGeneration: 1
    operations:
    - audit
    - status
    templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd
  - id: gatekeeper-controller-manager-7cbc758844-4v9tq
    observedGeneration: 1
    operations:
    - webhook
    templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd
  - id: gatekeeper-controller-manager-7cbc758844-l46b7
    observedGeneration: 1
    operations:
    - webhook
    templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd
  - id: gatekeeper-controller-manager-7cbc758844-m2szb
    observedGeneration: 1
    operations:
    - webhook
    templateUID: f86fdcb5-8390-4c24-8af8-164b3c47a4cd



Interpreting byPod Status

● If an entry is missing, assume the worst
● If deletion timestamp is set, assume the worst
● If you know you have 3 webhook pods, 3 status entries with the correct 

observedGeneration means that the constraint is enforced for the 
webhook



Implications on Infrastructure/Code/Design

● If we expect N pods, we must never have N + 1 pods
● Pods cannot serve until they have bootstrapped all initial constraints, 

templates, and data
● The semantics of multi-pod resources must be such that a missing resource 

can always be interpreted consistently (e.g. missing constraint => looser 
enforcement)

○ This makes referential constraints potentially problematic



Implementation of byPod Status

● Each pod writes to its own ConstraintPodStatus & 
ConstraintTemplatePodStatus resource

● These resources have an owner reference to the pod that writes to them
● A status controller copies pod statuses into the constraint/template

design doc

Pod ConstraintPodStatus

Pod ConstraintPodStatus

Pod ConstraintPodStatus

Status 
Controller

Constraint

https://docs.google.com/document/d/13xmVQuE9Q8CFDpL9pzpoAyH1nIzHndP0OfccXVShiPo/edit


Fun, Mathy Side Analysis

● Increasing the number of webhook pods decreases the likelihood of webhook 
unavailability

○ If there are N pods, 1 Pod is sufficient to serve all webhook traffic and each server has Pf 
independent probability of being down, the probability that the whole system will fail is Pf

N

● It also increases the mean-time-to-enforcement for constraints/templates
○ If the probability for a single host ingesting a constraint by time t is P(t), then the probability 

that all N hosts will have ingested that constraint is P(t)N, which makes longer ingestion times 
more likely. Thanks Wikipedia.

https://en.wikipedia.org/wiki/Extreme_value_theory
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Thank you

● Gatekeeper community
● Kubebuilder / controller-runtime
● Audience


