v 2

Codename VIFL

How to Migrate MySQL Database Clusters to Vitess

Rafael Chacon
Guido laquinti

a2 slack

SPEAKERS

Rafael Chacén Guido laquinti
he/him/his he/him/his
Y twitter.com/rafaelchacon Y twitter.com/guidoiaquinti

Staff Software Engineer - Slack Senior Staff Software Engineer - Slack

https://twitter.com/guidoiaquinti
https://twitter.com/rafaelchacon

Agenda

1.

Databases at Slack.

The Legacy Shards.

Vitess in front of legacy shards (VIFL).
a. The challenge and strategy.

b. Validation.

c. Automation.

Final remarks.

Q&A.

MISSION STATEMENT

Slack’s mission is to
make people’s
working lives simpler,
more pleasant, and
more productive.

Acme Inc. v
@ Alex Saunders

Za Jumpto...

= AllUnreads
@ Threads

Starred

announcements
design-team

social-media

helpdesk

® Sara Parker

Channels

accounting

@ design-crit

help-design

media-and-pr
triage-issues

design-team-sf

Direct Messages

¥ slackbot

B Zoe Maxwell, Leland...

O Florence Garret
® LizaZhang

#social-media

| 21 | &1 | Track and coordinate social med...

Today

Sara Parker 12:53PM

Really need to give some kudos to @zoe for helping
out with the new influx of tweets yesterday. People
are really, really excited about yesterday's
announcement!

B2 4l s 183

Zoe Maxwell 12:55 PM
No! It was my pleasure! Great to see the enthusiasm
out there.

Acme TeamBOT 12:56 PM
Event starting in 15 minutes:

Team Status Meeting =
Today from 1:00 PM to 1:30 PM

Harry Boone 12:58 PM

Quick note: today @Liza will join our team sync to
provide updates on the launch. If you have questions,
bring ‘em. See you all later... er, in 2 minutes &

Jeremy Stevens 1:42 PM
Meeting notes from our sync with @Liza !

1/9 Meeting Notes
Last edited just now.

Message #social-media @ ©

& (@ & | Q Search @iﬁ?

About #social-media

(@ Channel Details

‘¥ Highlights

% 1 Pinned Item

Q 21 Members

Shared Files

2\ Notification Preferences

DATABASES AT SLACK

Stats

Daily Active Users: 12 million
Queries per day: 65+ billion
Storage provisioned: 9+ PB

Thousands of database servers.

A

a
The Legacy (Shards) p 7;3)

)

&

a2 slack

DATABASES AT SLACK - THE LEGACY (SHARDS)

In the beginning...

aux

Webapp

My

HHVM/Hacklang

l Team Shards

Teams
1,4,5...

Teams
2,9,10...

My

mains

My

DATABASES AT SLACK - THE LEGACY (SHARDS)

= =
I n the beg I n n I ng EEE mysql > select db_shard from teams where id=1

Webapp

-

HHVM/Hacklang
aux l Team Shards l mains
\/ \/
Teams Teams
1,4,5... 2,9,10...

Shard 100 Shard 200

DATABASES AT SLACK - THE LEGACY (SHARDS)

= =
I n the beg I n n I ng EEE mysql > select db_shard from teams where id=1

Webapp

-

HHVM/Hacklang
aux * Team Shards l mains
\J \/
Teams Teams
1,4,5... 2,9,10...

Shard 100 Shard 200

DATABASES AT SLACK - THE LEGACY (SHARDS)

Limitations

Hotspots are a thing

Database Usage

Load

Database Shards

DATABASES AT SLACK - THE LEGACY (SHARDS)

Requirements

- Needs to support MySQL
- Provides flexible sharding strategy for different datasets
- Make sharding as transparent to the application as possible

- Horizontally scalable, highly available

Vitess

WHY VITESS?

- Abstraction of one giant MySQL database, with any number of tables

backed by any number of scaled-out hosts.

- Enables table-by-table configuration of different sharding policies so clients

no longer need to care about routing queries to specific shards.

WHY VITESS?

For more details
please see the
presentations on
the right.

tl;dr; shard size limits, inefficient resource
distribution, operational overhead, single sharding
model

e Scaling Resilient Systems: A Journey into Slack's
Database Service - Rafael Chacon & Guido laquinti.

e “Migrating to Vitess at (Slack) Scale” - Mike Demmer.

e “Designing and launching the next-generation
database system at Slack: from whiteboard to
production” - Guido laquinti.

https://www.percona.com/live/18/sessions/migrating-to-vitess-at-slack-scale
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production

A

Vitess in front of
legacy shards (VIFL)

b

5 slack \: g
] \‘ ‘

VIFL

Problem
statement

Our migration model
did not fit for all
tables.

Migrating ~70% of the workload to Vitess took ~2.5
years and it involved around ~10 tables (the most
complicated and highest volume ones).

o Multi quarter projects.

o Many engineers!

It was not really a migration, it was a re-architecture.

Visually: A Traditional Migration

https://docs.google.com/file/d/1SpZe23ZHnhSxvQynFyuEbvLnr4Gthumi/preview

VIFL

A new
challenge

How to migrate the
long tail?

Problem statement

The 30% traffic missing was from > 200 tables.
Best case to complete the migration following this

approach:

1 month / 1 table / 1 engineer = 16.5 years!

VIFL

Project e Move the remaining 30% workloads in a year.
reqU|rements e Zero or minimal disruption of our development team
workflow.

e Zero downtime allowed to perform the migration.

Visually: VIFL migration

https://docs.google.com/file/d/1gt4yZ_dsr6QkJSBW2pf6LiYqVOCma0Fr/preview

VIFL

Legacy
Topology

e MySQL 5.6.
e SBR: statement-based
replication.

e Primary / Primary.

Two servers per shard.

Async replication.

shard953e

Primary/Primary

SBR

shard953d

VIFL

Vitess
Topology

e MySQLb5.7.
e RBR:row-based
replication.

e Primary/ Replicas.
N servers per shard.
Semi-sync replication.

VIFL

Legacy Topology
e 2% 2
Primary/Primary
shard953e SBR shard953d

Vitess Topology

shard953

VIFL

New
migration
framework

Set of steps

1. Restore and upgrade
2. Synchronize

3. \Validate

4. Migrate

VIFL

Restore and upgrade

Create a new shard in Vitess
corresponding to a legacy shard of
the old architecture.

Seed the new shard with the latest
available backup from legacy.

Once the restore is completed,
perform an in-place upgrade of
MySQL, migrating the dataset to
the new version.

Take a fresh backup that can be
used to provision new hosts in the
Vitess shard.

VTGate

Vitess LegacyShards
Keyspace

vttablet

shard953

VIFL

Synchronize

e |everaging a core component of
Vitess: VReplication.

<. =N
° VRe.phc.atlon implements MySQL __VReplication | ..o)
replication protocol to shovel data MySQL ySQL
from an external database source to a

target Vitess shard.

VIFL

Synchronize

e |everaging a core component of
Vitess: VReplication.

e VReplication implements MySQL
replication protocol to shovel data
from an external database source to a
target Vitess shard.

mysql> select * from vreplication\G
3k 3K 3k 3k 3k 5k k >k %k %k >k 3k 5k 5k 5k k %k k %k k k ok . row 3k 3k 3k 3K 3k 5k 5k 5k k %k %k 3k ok ok 5k 5k k >k k k ok k

id:
workflow: vtshovel

source: filter:<rules:<match:"/.*" > > on_ddl:EXEC
external_mysql:"source mysql db"
pos: FilePos/mysql-bin.

VIFL

Synchronize

Webapp
e Leveraging a core component of ,E\
Vitess: VReplication. /./' '\.\ e
g R | W s
e VReplication implements MySQL ¥ ®, q
replication protocol to shovel data . T i e

from an external database source to a shardgsae [| shardasad i
target Vitess shard.

shard953

VIFL - VALIDATION

Validation

Two types of validation

e How do we know we didn’t leave 1. Database

any data behind?

e |s the data matching from the 2. Application
application perspective?

e Is this process reliable?

VIFL - VALIDATION

Validation
(databases)

e In vacuum this would have been
an easy task.

for table in tables {
source_table :="'select * from source db.$table’
dest_table :='select * from dest db.$table’
if source_table != dest_table {

panic "there are diffs"

SourceDB DestDB

VIFL - VALIDATION

Validation
(databases) L
7N
7 \ e .
e In vacuum this would have been z N | Pl

Keyspace

an easy task. | | !
! Y
P SBR ~ ._VRipliﬁ‘?tlc’U—-J--+ vttablet fw—w
e Unfortunately both databases are e e |

|

constantly changing (due to write :
traffic), we are not in the vacuum :
and an atomic comparison of i
|

|

|

|

|

potentially terabytes of data is
not feasible.

VIFL - VALIDATION

Validation
(databases)

We want a consistent snapshot
between two databases that are taking
traffic at the same time.

Webapp

MySQL

VReplication

vttablet

MySQL

VIFL - VALIDATION

Validation
(databases)

Step 1

e stop VReplication

Webapp

VReplication
MySQL °‘ ''''''''' Ead

vttablet

MySQL

VIFL - VALIDATION

Validation
(databases)

Webapp

Step 2
Step 2: lock / select / store binlog pos / unlock
e In the source: lock table X
. i

Issue streaming SELECT * from X

in the source. |

Record binlog position (alpha). '

In the source: unlock table X. e——— VReplication R

MySOL s e e Wi —-»| vttablet MySOL

This whole operation is really fast, you
only lock the table for a few
milliseconds.

VIFL - VALIDATION

Validation
(databases)

Step 3

e Start vreplication and stop it
again at alpha position.

e Issue streaming SELECT for X in
the destination.

e Start vreplication.

Webapp

select * from X

£ N

vttablet

- —|

vreplicate and stop at
alpha position.

MySQL

VIFL - VALIDATION

Validation
(databases)

Step 4

e Compare the data of the table.
e |terate for all the tables present in
the source.

Done!

Webapp

MySQL

VReplication

vttablet

MySQL

VIFL - VALIDATION

Validation
(databases)

How do we know we didn’t
leave any data behind?

Do we have the same data
in the source and destination
datastores?

The database validation is assuring us that the content of all tables is

matching at a specific transaction/timestamp.

VIFL - VALIDATION

Validation
(application)

Some assumptions.

Scale
We expected a performance regressions mostly driven by the additional
network latency:

e 1 x RTT during reads (due to the extra network hop in vtgate).

e 2 x RTT during writes (due to the extra network hop in vigate +
semi-sync ack from MySQL replication).

This slowdown is acceptable by the application and it won’t be noticeable
in the overall performance.

Correctness
All queries should be compatible (Vitess V2 “passthrough” routing). We
needed to verify that.

VIFL - VALIDATION

Validation
(application)

We built a framework within
our app to validate scale and
correctness of the the new
system.

shard953e -

- Web Application -

lib_db

-
'

shard953d

||HHHHHHI|

VIFL - VALIDATION

Result of comparison

Validation
- - Dark Read SELECT statement example
(application)
Webapp lib db Legacy Shard Vitess Data Warehouse
T T T T
. oy | | | |
We built a framework within | Requestio DB (selectafromy). | | |
our app to validate scale and : ’: : :
correctness of the the new | |selectaiomy .o |
| | | |
system. I | select a from y I
I I T >
| | : |
1 - . Bt <ol S
| .“
| |
|
| |
| |
| |
| |

e T e

|
!

e e C 1 !
! !

! |

1 1

VIFL - VALIDATION

Validation
(application)

The majority of query results
were matching but we had
to manually investigate
some outliers.

Claimed by

Query Hash

|

D

Notes

‘Query Count ‘Ma\ch %

Another team_channels_shared with no order clause. This is part of
db_teams_channels_shared which is autogenerated code. | think we should just

rafael 13402318e5486375ac443f5f7acbcd85 42635 Probably OK ignore this hash.
rafael 65cfb17de05fc0e626f12bd9d6dccbe Probably OK Same as 13402318e5486375ac443f5f7acbcd85. Resolution is to ignore.
This might be another ordering issue, but is not obvious. To be sure, | propose we
rafael a23d4d6e22507e0baebeead394a360ae Needs further investigation change the code to be explicit about it.
rafael 1 7de89b3cc4995 206| 44.17475728 | OK
Order by id issue. Can be verified by
rafael 47e3a6b42c01c813eb1 55| 45.45454545| Probably OK
Most shards are matching 100%. 648 reporint 95% due to content. This seems to be
rafael 8c83af210055¢27de5b2470781ebbb2d 149| 55. Needs further investigation an order issue as well. Very similar to a23d4d6e22507e0bae6cead394a360ae
Matching for most shards. Only a few reporting diffs. Also confirmed that diffs in
tinyspeck are due to ordering. The following query matches in both vifl and legacy:
rafael b48d0b55a06af11d8b0a1e540e5a2790 3626| 79.45394374|Probably OK
This is from db_teams_channels_shared_fetch_team_async which is autogenerated,
rafael 5bc3a35f33bb288743f1d4e1d8a38df9 8 87.5 we can't apply the order by here. Should go away with @rbailey fancy diffing.
Query is missing order clause sometimes. | think solving that should make the
problem go away. This PR addresses this one:
rafael bb9a5b273b4c6aed8cOa7eafd300b257 35926 90.0128041|OK
Most shards have 100% match rate for this query. Given that this is also a channels
query without order, I'm leaning to think that in some cases is not returning values
rafael dc8e1dcf72f688d29957167f9e0de80e 3926 97.3764646 | Probably OK with the same order.
This was an update query than in two instances affected rows had a different value.
rafael edefd7db5a5f973170dc7f17bca5434e i) .2300885| OK This could be easily explained to a race. All the other shards are at 100%.
rafael 19902¢9ca133f61dd2fdca49faa56044 594 © 8989899 | OK Same as above, this table seems hot and sometimes affected_rows does not match.

VIFL - VALIDATION

Validation
(application)

The majority of query results
were matching but we had
to manually investigate
some outliers.

We ran these tests for over two months.
We analyzed every single diff.
Most of the errors were driven by:
o changes in order preferences in MySQL from 5.6 to 5.7 when
explicit order was not provided.
o places where the application expected read after write
semantics.

We got to this phase within the first 4 months of the project.

We concluded it was safe to proceed.

VIFL - MIGRATION

Webapp
- 1lib_db_async.php -
it |
X
/ N Fr— e —
7 . | Vitess LegacyShards .
7 N . Keyspace .
i N, |
|
P SBR . . _VReplication _ _ ~_ _ _ 1.
shard953e | " | shard953d | | vitablet shard953

VIFL - MIGRATION

Webapp
b syrephe
=,
N e
N | Vitess LegacyShards
\\. : Keyspace

N I

——- —— |

SBR VReplication L

P~ - |\ T—— N " S i oS SR G S S .
shard953e shard953d i | wttablet shard953

| host. ; |

VIFL - MIGRATION

Webapp

. 1 ib_db_async. php_i

. P
R, e _’ N " Vitess LegacyShards

~. _

== g= § : Keyspace
L
\' s
S e w;! T
SBR VReplication 1
l—————————=—] e = SSETEDETED N e e e e i 5
shard953e shard953d i *| wttablet shard953

I We wait for all transactions to replicate QN&T

| 953d. : I
© + We change the application to start routing | :
! to Vitess. : |

VIFL - MIGRATION

Webapp

. lib_db_async. php_i

. P
®, | e ¥igare N i Vitess LegacyShards

S g g : Keyspace
L
\ .
- i “al -
SBR 1
-« 2" S G S S g s
shard953e shard953d ° | *| wttablet shard953
|
I
....................... [
T After VReplication catches up, stop the -L.r
| stream. : |
| ! |

VIFL - MIGRATION

Webapp

L Lib-ab_asyne.pho

. U
N, ey 5 D B VTGate N | Vitess LegacyShards

''''' Keyspace

I
: yesahlet shard953

VIFL - MIGRATION

We validated that the core idea is
working

Now we only have to:

e repeat this process more than a
thousand times.

e with no errors.

e with zero downtime.

("B

VIFL - AUTOMATION

Goal Build an automation to execute the VIFL migration procedure

that is repeatable and safe.

Repeatable: suitable to be executed thousands times with little

overhead and zero or limited human intervention.

Safe: no room for mistakes (from human or robots).

VIFL - AUTOMATION

TOOI kit e Built using Python 2.7 with the use of our internal (but
soon deprecated) SlackOps library.

e A lot of cross system and service interactions

o OS

o MySQL

o DBConfig (our legacy database service discovery
system)

Automation was built and completed between January and April
2020.

VIFL - AUTOMATION

Defen Sive We built the automation as a state machine made by several
i idempotent steps:
coding N
e check_prerequisites
e seed
Always plan for the e provision
unexpected. e validation
e migration
e cleanup

VIFL - AUTOMATION

State We defined very strict boundaries and allowed actions for
i} each step of the state machine.
machine

Each step interacted with the previous/following one only via
predictable interfaces. The compartmentalization was very
e Predictable useful to isolate each step and make easier the development,
components. test and reuse of components.

e Steps are easy to

implement, change, other
test, and reuse.
other
~
_s,aH HQH H
a any

other

VIFL - AUTOMATION

Idempotence

We also made sure that every step of the automation was also
idempotent (safe to be re-run multiple times without changing
the final result).

Implementing this property for all the steps helped us to build
confidence in the tool as well as allowing robots and humans
to recover from transient issues during the execution.

VIFL - AUTOMATION

Safety
guardrails

State machine properties and idempotence are very valuable
characteristics for an automation but are them enough to
archive our strict requirements? Not in our case. We also built
safety guardrails against:

e robots: other automation tools concurring for shared
resources (e.g. schema change, backup, shard split)

e ourself: human errors (e.g. try to migrate shard id 0123
when validation was executed for shard id 4567)

([CAUTION]

DO NOT OPERATE
THIS MACHINE WITHOUT
GUARDS IN PLACE

. J

Final remarks

FINAL REMARKS

Results
(1 of 2)

This project was designed, built and executed by a team of
4 engineers in a timeframe of ~1 year. We calculated that
by following the legacy migration path it would have took >
70 engineers to deliver the same result in a similar
timeframe.

Equally important, this migration was completely
transparent to our application engineers as well as end
users.

FINAL REMARKS

Results
(2 of 2)

By leveraging the VReplication functionality in Vitess, we
came up with a strategy that enabled us to migrate entire
clusters to Vitess instead of the previous table by table
procedure.

We moved hundreds of terabytes of data. Over 1000
MySQL shards. Zero downtime, not a single outage.

Today, 99% of Slack traffic is on Vitess and we are
expected to wrap up this migration by the end of the year.

FINAL REMARKS

100%

75%

50%

25%

0%
Jul'17

Jul 2017
Start of the
Vitess journey

% of Webapp Database Queries on Vitess

Oct'17 Jan'18 Apr'18 Jul '18 Oct '18 Jan'19 Apr'19 Jul'19 Oct '19 Jan '20 Apr 20

Apr 2020
‘message’ table is migrated,
70% of adoption is reached

FINAL REMARKS Sep 2020
99% of the VIFL migrations are completed
+30% adoption in < 6 months

% of Webapp Database Queries on Vitess \
100%

May 2020
Starts of VIFL migration

75% \

50%

25%

0%
Jul'17 Oct '17 Jan'18 Apr'18 Jul '18 Oct '18 Jan'19 Apr'19 Jul'19 Oct '19 Jan 20 Apr 20 Jul 20 Oct '20

Apr 2020
‘message’ table is migrated,
70% of adoption is reached

FINAL REMARKS

Unexpected
Challenges

Things never goes as
expected.

We unfortunately also faced some unexpected challenges while
preparing the migration of few of our busiest shards:

e MySQL 5.7 optimizer performance regression
e overhead of vitablet was noticeable
e overhead of golang GC

e |atency regression at high percentiles (p99, p999)

FINAL REMARKS

Conclusions

Breaking down the validation step and the migration
mechanism was key for us.

We iterated over the initial design several times, balancing
speed, execution time and safety.

Was this a success? We accomplished everything that we
said we were going to do despite some hiccups. Today
99% of Slack’s databases are running on Vitess.

Could you replicate this elsewhere? Yes if, same
assumptions hold:
o Hit on P50 latency (due to additional network hops)
o Enough headroom to absorb the cost of running the
vitablet process in front of MySQL.

Suggested session

Vitess: Introduction and New Features
Sugu Sugumarane & Deepthi Sigireddi, Planetscale, Inc

Wednesday, November 18 ® 5:45pm - 6:20pm

v

-

https://kccncna20.sched.com/event/ekIT/vitess-introduction-and-new-features-sugu-sugumarane-deepthi-sigireddi-planetscale-inc
https://kccncna20.sched.com/event/ekIT/vitess-introduction-and-new-features-sugu-sugumarane-deepthi-sigireddi-planetscale-inc

Thank you!

P.S. We are hiring!

4 slack

http://slack.com/jobs

Q&A

mistermysq|l Il
0 @mistermysqlq M S / ‘
AMA. All questions must be in the form of : . i 18
valid SQL queries. . R T e
5:21 PM - 17 Nov 2019 _ 1 b

© e O

4 slack

https://twitter.com/mistermysql/status/1196237057191841792

