
Codename VIFL
How to Migrate MySQL Database Clusters to Vitess

Rafael Chacón
Guido Iaquinti

Guido Iaquinti

he/him/his

Senior Staff Software Engineer - Slack

twitter.com/guidoiaquinti

SPEAKERS

Rafael Chacón

he/him/his

Staff Software Engineer - Slack

twitter.com/rafaelchacon

https://twitter.com/guidoiaquinti
https://twitter.com/rafaelchacon

Agenda 1. Databases at Slack.

2. The Legacy Shards.

3. Vitess in front of legacy shards (VIFL).

a. The challenge and strategy.

b. Validation.

c. Automation.

4. Final remarks.

5. Q&A.

Slack’s mission is to
make people’s
working lives simpler,
more pleasant, and
more productive.

MISSION STATEMENT

Databases at Slack

Stats

DATABASES AT SLACK

Daily Active Users: 12 million

Queries per day: 65+ billion

Storage provisioned: 9+ PB

Thousands of database servers.

The Legacy (Shards)

In the beginning...

Webapp

HHVM/Hacklang

Teams
1,4,5... 456

mains

456

aux

DATABASES AT SLACK - THE LEGACY (SHARDS)

Teams
2,9,10...

Team Shards

In the beginning...

Webapp

HHVM/Hacklang

Team Shards

Teams
1,4,5... 456

mains

456

aux

1

DATABASES AT SLACK - THE LEGACY (SHARDS)

Teams
2,9,10...

Shard 100 Shard 200

mysql > select db_shard from teams where id=1

+---------------+

| db_shard |

+---------------+

| 100 |

+---------------+

In the beginning...

Webapp

HHVM/Hacklang

Team Shards

Teams
1,4,5... 456

mains

456

aux

1

DATABASES AT SLACK - THE LEGACY (SHARDS)

Teams
2,9,10...

Shard 100 Shard 200

mysql > select db_shard from teams where id=1

+---------------+

| db_shard |

+---------------+

| 100 |

+---------------+

2

Limitations
- Hotspots are a thing

DATABASES AT SLACK - THE LEGACY (SHARDS)

Requirements
- Needs to support MySQL

- Provides flexible sharding strategy for different datasets

- Make sharding as transparent to the application as possible

- Horizontally scalable, highly available

DATABASES AT SLACK - THE LEGACY (SHARDS)

Vitess

WHY VITESS?

- Abstraction of one giant MySQL database, with any number of tables

backed by any number of scaled-out hosts.

- Enables table-by-table configuration of different sharding policies so clients

no longer need to care about routing queries to specific shards.

WHY VITESS?

For more details
please see the
presentations on
the right.

tl;dr; shard size limits, inefficient resource
distribution, operational overhead, single sharding
model

● Scaling Resilient Systems: A Journey into Slack's
Database Service - Rafael Chacón & Guido Iaquinti.

● “Migrating to Vitess at (Slack) Scale” - Mike Demmer.

● “Designing and launching the next-generation
database system at Slack: from whiteboard to
production” - Guido Iaquinti.

https://www.percona.com/live/18/sessions/migrating-to-vitess-at-slack-scale
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production
https://www.percona.com/live/18/sessions/designing-and-launching-the-next-generation-database-system-slack-from-whiteboard-to-production

Vitess in front of
legacy shards (VIFL)

VIFL

● Migrating ~70% of the workload to Vitess took ~2.5

years and it involved around ~10 tables (the most

complicated and highest volume ones).

○ Multi quarter projects.

○ Many engineers!

● It was not really a migration, it was a re-architecture.

Problem
statement

Our migration model
did not fit for all
tables.

Visually: A Traditional Migration

https://docs.google.com/file/d/1SpZe23ZHnhSxvQynFyuEbvLnr4Gthumi/preview

A new
challenge

VIFL

How to migrate the
long tail?

Problem statement

● The 30% traffic missing was from > 200 tables.

● Best case to complete the migration following this

approach:

1 month / 1 table / 1 engineer = 16.5 years!

VIFL

● Move the remaining 30% workloads in a year.

● Zero or minimal disruption of our development team
workflow.

● Zero downtime allowed to perform the migration.

Project
requirements

Visually: VIFL migration

https://docs.google.com/file/d/1gt4yZ_dsr6QkJSBW2pf6LiYqVOCma0Fr/preview

VIFL Migration

Legacy
Topology

● MySQL 5.6.
● SBR: statement-based

replication.
● Primary / Primary.
● Two servers per shard.
● Async replication.

VIFL

Vitess
Topology

● MySQL 5.7.
● RBR: row-based

replication.
● Primary / Replicas.
● N servers per shard.
● Semi-sync replication.

VIFL

VIFL

Legacy Topology Vitess Topology

VIFL

Set of steps

1. Restore and upgrade

2. Synchronize

3. Validate

4. Migrate

New
migration
framework

Restore and upgrade
● Create a new shard in Vitess

corresponding to a legacy shard of
the old architecture.

● Seed the new shard with the latest
available backup from legacy.

● Once the restore is completed,
perform an in-place upgrade of
MySQL, migrating the dataset to
the new version.

● Take a fresh backup that can be
used to provision new hosts in the
Vitess shard.

VIFL

Synchronize

● Leveraging a core component of
Vitess: VReplication.

● VReplication implements MySQL
replication protocol to shovel data
from an external database source to a
target Vitess shard.

VIFL

Synchronize

● Leveraging a core component of
Vitess: VReplication.

● VReplication implements MySQL
replication protocol to shovel data
from an external database source to a
target Vitess shard.

VIFL

mysql> select * from vreplication\G

********************** 1. row **********************

 id: 1

 workflow: vtshovel

 source: filter:<rules:<match:"/.*" > > on_ddl:EXEC

external_mysql:"source_mysql_db"

 pos: FilePos/mysql-bin.000048:59491335

Synchronize

● Leveraging a core component of
Vitess: VReplication.

● VReplication implements MySQL
replication protocol to shovel data
from an external database source to a
target Vitess shard.

VIFL

Validation

● How do we know we didn’t leave
any data behind?

● Is the data matching from the
application perspective?

● Is this process reliable?

VIFL - VALIDATION

Two types of validation

1. Database

2. Application

Validation
(databases)

● In vacuum this would have been
an easy task.

VIFL - VALIDATION

for table in tables {

 source_table :='select * from source_db.$table'

 dest_table :='select * from dest_db.$table'

 if source_table != dest_table {

 panic "there are diffs"

 }

}

Validation
(databases)

● In vacuum this would have been
an easy task.

● Unfortunately both databases are
constantly changing (due to write
traffic), we are not in the vacuum
and an atomic comparison of
potentially terabytes of data is
not feasible.

VIFL - VALIDATION

Validation
(databases)

We want a consistent snapshot
between two databases that are taking
traffic at the same time.

VIFL - VALIDATION

Validation
(databases)

Step 1

● stop VReplication

VIFL - VALIDATION

Validation
(databases)

Step 2

● In the source: lock table X
● Issue streaming SELECT * from X

in the source.
● Record binlog position (alpha).
● In the source: unlock table X.

This whole operation is really fast, you
only lock the table for a few
milliseconds.

VIFL - VALIDATION

Validation
(databases)

Step 3

● Start vreplication and stop it
again at alpha position.

● Issue streaming SELECT for X in
the destination.

● Start vreplication.

VIFL - VALIDATION

Validation
(databases)

Step 4

● Compare the data of the table.
● Iterate for all the tables present in

the source.

Done!

VIFL - VALIDATION

Validation
(databases)

How do we know we didn’t
leave any data behind? ✅

Do we have the same data
in the source and destination
datastores? ✅

VIFL - VALIDATION

The database validation is assuring us that the content of all tables is

matching at a specific transaction/timestamp.

Validation
(application)

Some assumptions.

VIFL - VALIDATION

Scale
We expected a performance regressions mostly driven by the additional
network latency:

● 1 x RTT during reads (due to the extra network hop in vtgate).

● 2 x RTT during writes (due to the extra network hop in vtgate +
semi-sync ack from MySQL replication).

This slowdown is acceptable by the application and it won’t be noticeable
in the overall performance.

Correctness
All queries should be compatible (Vitess V2 “passthrough” routing). We
needed to verify that.

Validation
(application)

We built a framework within
our app to validate scale and
correctness of the the new
system.

VIFL - VALIDATION

Validation
(application)

We built a framework within
our app to validate scale and
correctness of the the new
system.

VIFL - VALIDATION

Validation
(application)

The majority of query results
were matching but we had
to manually investigate
some outliers.

VIFL - VALIDATION

Validation
(application)

The majority of query results
were matching but we had
to manually investigate
some outliers.

VIFL - VALIDATION

● We ran these tests for over two months.

● We analyzed every single diff.

● Most of the errors were driven by:
○ changes in order preferences in MySQL from 5.6 to 5.7 when

explicit order was not provided.
○ places where the application expected read after write

semantics.

● We got to this phase within the first 4 months of the project.

● We concluded it was safe to proceed.

VIFL - MIGRATION

VIFL - MIGRATION

VIFL - MIGRATION

VIFL - MIGRATION

VIFL - MIGRATION

VIFL - MIGRATION

We validated that the core idea is
working

Now we only have to:

● repeat this process more than a
thousand times.

● with no errors.

● with zero downtime.

Goal

VIFL - AUTOMATION

Build an automation to execute the VIFL migration procedure

that is repeatable and safe.

Repeatable: suitable to be executed thousands times with little

overhead and zero or limited human intervention.

Safe: no room for mistakes (from human or robots).

Toolkit ● Built using Python 2.7 with the use of our internal (but
soon deprecated) SlackOps library.

● A lot of cross system and service interactions
○ OS
○ MySQL
○ DBConfig (our legacy database service discovery

system)

Automation was built and completed between January and April
2020.

VIFL - AUTOMATION

Defensive
coding

Always plan for the
unexpected.

We built the automation as a state machine made by several
idempotent steps:

● check_prerequisites
● seed
● provision
● validation
● migration
● cleanup

VIFL - AUTOMATION

We defined very strict boundaries and allowed actions for
each step of the state machine.

Each step interacted with the previous/following one only via
predictable interfaces. The compartmentalization was very
useful to isolate each step and make easier the development,
test and reuse of components.

VIFL - AUTOMATION

State
machine

● Predictable
components.

● Steps are easy to
implement, change,
test, and reuse.

Idempotence We also made sure that every step of the automation was also
idempotent (safe to be re-run multiple times without changing
the final result).

Implementing this property for all the steps helped us to build
confidence in the tool as well as allowing robots and humans
to recover from transient issues during the execution.

VIFL - AUTOMATION

Safety
guardrails

State machine properties and idempotence are very valuable
characteristics for an automation but are them enough to
archive our strict requirements? Not in our case. We also built
safety guardrails against:

● robots: other automation tools concurring for shared
resources (e.g. schema change, backup, shard split)

● ourself: human errors (e.g. try to migrate shard id 0123
when validation was executed for shard id 4567)

VIFL - AUTOMATION

Final remarks

Results
(1 of 2)

FINAL REMARKS

● This project was designed, built and executed by a team of
4 engineers in a timeframe of ~1 year. We calculated that
by following the legacy migration path it would have took >
70 engineers to deliver the same result in a similar
timeframe.

● Equally important, this migration was completely
transparent to our application engineers as well as end
users.

Results
(2 of 2)

FINAL REMARKS

● By leveraging the VReplication functionality in Vitess, we
came up with a strategy that enabled us to migrate entire
clusters to Vitess instead of the previous table by table
procedure.

● We moved hundreds of terabytes of data. Over 1000
MySQL shards. Zero downtime, not a single outage.

● Today, 99% of Slack traffic is on Vitess and we are
expected to wrap up this migration by the end of the year.

FINAL REMARKS

Jul 2017
Start of the

Vitess journey

Apr 2020
‘message’ table is migrated,
70% of adoption is reached

FINAL REMARKS

Apr 2020
‘message’ table is migrated,
70% of adoption is reached

Sep 2020
99% of the VIFL migrations are completed

+30% adoption in < 6 months

May 2020
Starts of VIFL migration

Unexpected
Challenges
Things never goes as
expected.

FINAL REMARKS

We unfortunately also faced some unexpected challenges while
preparing the migration of few of our busiest shards:

● MySQL 5.7 optimizer performance regression

● overhead of vttablet was noticeable

● overhead of golang GC

● latency regression at high percentiles (p99, p999)

Conclusions

FINAL REMARKS

● Breaking down the validation step and the migration
mechanism was key for us.

● We iterated over the initial design several times, balancing
speed, execution time and safety.

● Was this a success? We accomplished everything that we
said we were going to do despite some hiccups. Today
99% of Slack’s databases are running on Vitess.

● Could you replicate this elsewhere? Yes if, same
assumptions hold:

○ Hit on P50 latency (due to additional network hops)
○ Enough headroom to absorb the cost of running the

vttablet process in front of MySQL.

Suggested session
Vitess: Introduction and New Features
Sugu Sugumarane & Deepthi Sigireddi, Planetscale, Inc

Wednesday, November 18 • 5:45pm - 6:20pm

https://kccncna20.sched.com/event/ekIT/vitess-introduction-and-new-features-sugu-sugumarane-deepthi-sigireddi-planetscale-inc
https://kccncna20.sched.com/event/ekIT/vitess-introduction-and-new-features-sugu-sugumarane-deepthi-sigireddi-planetscale-inc

Thank you!

P.S. We are hiring!

http://slack.com/jobs

Q&A

https://twitter.com/mistermysql/status/1196237057191841792

