
Sascha Grunert (SUSE)
Urvashi Mohnani, Peter Hunt, Mrunal Patel (Red Hat)

CRI-O: The Runtime
Control Room

Introduction

● What is CRI-O?

● Balance stability and new features

How CRI-O can be configured

Overview

● /etc/crio/crio.conf is the main configuration file written in TOML

● every configurable part of CRI-O can be set there:

○ specifying the storage_driver and root

○ which underlying OCI container runtime to choose (runc, crun for example)

○ security related options like the default seccomp_profile, apparmor_profile

and used default_capabilities

○ debugging helpers like log_level and log_filter

● we’re working on making configuration options dynamically reloadable

● introduced a modular configuration approach

How CRI-O can be configured

Dynamic aspects of CRI-O’s configuration

● CRI-O supports a dynamic configuration reload
○ sending SIGHUP to the server reloads options which support the feature, like:

■ seccomp_profile and apparmor_profile
■ log_level and log_filter

● partial drop-in configurations can be stored in /etc/crio/crio.conf.d:
[crio.runtime]
log_level = "debug"

● alphabetical order of processing of the snippets make them easy to use
● works with the dynamic configuration reload feature, too

How CRI-O can be configured

Shared configurations between the container tools

● Shared backend libraries

○ containers/storage

○ containers/image

● /etc/containers/registries.conf

○ Configure insecure, blocked, unqualified-search registries, and mirrors

● /etc/containers/policy.json

○ Policy requirements for a container image

● /etc/containers/storage.conf

○ Configure various storage related options such driver, runroot, size etc.

How CRI-O can be configured
Networking configuration

● CRI-O uses CNI for configuring networking for k8s pods

● Any CNI compatible plugins are supported

● CRI-O allows bootstrapping networking through daemonsets

● CRI-O supports setting a default networking plugin

How CRI-O can be configured
Runtime Classes/Handlers

● Differing workloads have different performance/security needs
● Runtime Classes (GA in 1.20) asks CRI implementation to use a different runtime

○ Or use it differently
● Admins can create runtime classes, and add admission controllers/policies to gate them

https://kubernetes.io/docs/concepts/containers/runtime-class/

https://kubernetes.io/docs/concepts/containers/runtime-class/

How CRI-O can be configured
Pod Annotations

● Key/Value map in Pod metadata
● Allow passing of unstructured data to varying levels of the stack
● CRI-O specific annotations:

○ UsernsModeAnnotation: "io.kubernetes.cri-o.userns-mode"
○ ShmSizeAnnotation: "io.kubernetes.cri-o.ShmSize"

How CRI-O can be configured
Summary

● Admins can:

○ Configure CRI-O specific configuration

○ Add runtime classes to restrict varying behavior

○ Have admission controllers gate runtime classes/annotations before they reach CRI-O

https://star-wars-memes.fandom.com/wiki/Unlimited_power!?file=CFD5C99C-B322-46A2-9892-AFDF484D28E1.jpeg

https://star-wars-memes.fandom.com/wiki/Unlimited_power!?file=CFD5C99C-B322-46A2-9892-AFDF484D28E1.jpeg

Runtime Class Topology

Manage CPU load balancing for workloads

● Enable/disable CPU load balancing

○ High performance runtimes

○ cpu-load-balancing.crio.io annotation set in pod/container spec

○ Hooks for pre-start and pre-stop run

Security related configurations

Kubernetes Container Runtime Interface (CRI) defines the main behavior,
which is not always the most secure.

● not specified seccomp profiles are right now considered as unconfined:
 // Default: "", which is identical with unconfined.
 string seccomp_profile_path = 7;

● new configuration option seccomp_use_default_when_empty will help to increase
the security defaults

● turning the option on will apply the runtime/default seccomp profile to all workloads
which do not explicitly specify unconfined or a localhost/ profile

seccomp profile override

User namespaces

● users/groups = people
● available range of IDs = house
● user namespace = people living in a doll

house (subset of range of IDs)
● Security advantage:

○ While inside the container, the process
thinks it is privileged

○ Outside, it can be an unprivileged
process

https://live.staticflickr.com/2772/4426922434_fba42eb481_w_d.jpg

https://live.staticflickr.com/2772/4426922434_fba42eb481_w_d.jpg

User namespaces

● Long time issue:
○ https://github.com/kubernetes/enhancements/issues/127 (2016)
○ https://github.com/kubernetes/enhancements/pull/2101 (2020)

● Much like pids_limit, CRI-O has added support before upstream kube
● Admins can

○ stop anyone from creating user namespaces
○ only allow some to use user namespaces (admission controller/policy/runtime class)
○ give anyone access to user namespaces

https://github.com/kubernetes/enhancements/issues/127
https://github.com/kubernetes/enhancements/pull/2101

Future

Currently at CRI-O 1.19

● Cgroups V2

● User namespaces

● Using Rust for some of the cri-o components

● Graduation!

Find out More!
Website https://cri-o.io

Github https://github.com/cri-o/cri-o

Slack #crio on kubernetes.slack.com

IRC #crio on Freenode

Past Talks https://github.com/cri-o/cri-o/blob/master/
awesome.md

Coloring
Book

https://github.com/mairin/coloringbook-con
tainer-commandos/blob/master/Web.pdf

https://cri-o.io
https://github.com/cri-o/cri-o
https://github.com/mairin/coloringbook-container-commandos/blob/master/Web.pdf
https://github.com/mairin/coloringbook-container-commandos/blob/master/Web.pdf

