
Automatically Make Dashboards
100x Faster

Shreyas Srivatsan, Chronosphere
November 20, 2020

Who am I?

Shreyas Srivatsan

Software Engineer @Chronosphere
- Hosted metrics & monitoring platform
- Large scale, high throughput use cases
- Built on M3

Previously Observability @Uber

The Problem

Aggregating Metrics - Recording
Rules and M3 Aggregation Tier

Making Things Easy to Use

Demo

Q&A

Agenda

cAdvisor - resource usage and performance metrics of running containers

High Cardinality Metrics Example

Container CPU usage has ~16k series and takes 20s to query...

High Cardinality Metrics Example

Same metric but aggregated to just two labels - ~230 series, 0.4s to query

High Cardinality Metrics Example

Slowing Dashboards
● Cardinality of dimensions keep increasing

○ Add new instances, roll out new images etc

● Slower dashboard loads and eventually the browser locking up

● Engineer notices this and needs to optimize dashboard

Debugging Slow Dashboards
First step - figure out which queries are the culprit

● Inspecting the requests from a dashboard to look for slow queries

● Can use Prometheus query log, but associating back to dashboard is

difficult

Second Step - pre-aggregate metrics, to make queries faster

Recording Rules

● Prometheus provides support for recording rules

○ Allows pre-computing queries and storing back aggregate time

series to the TSDB

○ Dashboard can now be pointed at pre-computed time series

- record: cluster_container_namespace:container_cpu_usage_seconds_total:sum_rate1m

 expr: sum(rate(container_cpu_usage_seconds_total[1m])) by (container_name, namespace)

Recording Rules

● Need to know what to pre-compute

○ Figure out bad queries by analyzing dashboard

○ Configure the recording rules

○ Change dashboard to query the recording rule metrics

● What happens when metric changes or a second panel becomes slow?

○ Repeat process all over again

Recording Rules are Expensive

● Recording rules execute and pre-compute the query at regular intervals

● Queries accessing many time series can get expensive very quickly

● Potential to overwhelm the query engine

But, we do not always need the underlying metrics. The underlying

dimensions can be dropped and not stored.

M3 Aggregation Tier

● M3 is a remote storage for Prometheus

● Move expensive recording rule

computation to streaming aggregation

● Aggregator allows downsampling,

dropping or aggregating metrics prior

to persisting to M3DB

● Rollup rules allow aggregating metrics

● Mapping rules allow dropping metrics

Prometheus
Remote

Write M3
Coordinator

M3
Coordinator

M3
Aggregator

M3
Aggregator

M3DBM3DB
M3DB

Rollup Rules

 - name: "cAdvisor CPU usage aggregate"

 filter: "__name__:container_cpu_usage_seconds_total namespace:* le:*

name:* instance:* container_name:*"

 transforms:

 - transform:

 type: "Increase"

 - rollup:

 metricName: "container_cpu_usage_seconds_total"

 groupBy: ["container_name", "namespace"]

 aggregations: ["Sum"]

 - transform:

 type: "Add"

 storagePolicies:

 - resolution: 30s

 retention: 720h

Rollup rules contain a series of

transforms applied in order.

Metrics applied to depend on

the filter match.

Step 1: Take delta

Step 2: Sum by dimension

Step 3: Create monotonic

cumulative counter.

Rollup Rules - Deep Dive

 - name: "cAdvisor CPU usage aggregate"

 filter: "__name__:container_cpu_usage_seconds_total namespace:* le:*

name:* instance:* container_name:*"

 transforms:

 - transform:

 type: "Increase"

 - rollup:

 metricName: "container_cpu_usage_seconds_total"

 groupBy: ["container_name", "namespace"]

 aggregations: ["Sum"]

 - transform:

 type: "Add"

 storagePolicies:

 - resolution: 30s

 retention: 720h

Take deltas of the underlying

series, so that they can be used

by the actual rollup

Rollup Rules - Deep Dive

Sum the deltas by unique

dimension specified in the

group by. So a rollup for each

unique container_name and

namespace.

 - name: "cAdvisor CPU usage aggregate"

 filter: "__name__:container_cpu_usage_seconds_total namespace:* le:*

name:* instance:* container_name:*"

 transforms:

 - transform:

 type: "Increase"

 - rollup:

 metricName: "container_cpu_usage_seconds_total"

 groupBy: ["container_name", "namespace"]

 aggregations: ["Sum"]

 - transform:

 type: "Add"

 storagePolicies:

 - resolution: 30s

 retention: 720h

Rollup Rules - Deep Dive

 - name: "cAdvisor CPU usage aggregate"

 filter: "__name__:container_cpu_usage_seconds_total namespace:* le:*

name:* instance:* container_name:*"

 transforms:

 - transform:

 type: "Increase"

 - rollup:

 metricName: "container_cpu_usage_seconds_total"

 groupBy: ["container_name", "namespace"]

 aggregations: ["Sum"]

 - transform:

 type: "Add"

 storagePolicies:

 - resolution: 30s

 retention: 720h

Perform a cumulative add for

each of the metrics to get the

aggregated time series.

This is sent to the M3DB

namespaces identified by the

storage policies.

Mapping Rules

Mapping rules allow us to drop

metrics based on the filter -

that is all the original

unaggregated series.

Aggregate series can take the

same name as original metric.

 - name: "cAdvisor CPU usage drop unaggregated rule"

 filter: "__name__:container_cpu_usage_seconds_total namespace:* le:*

name:* instance:* container_name:*"

 drop: true

M3 Aggregation Tier - Summary

● Allows for ingestion time streaming aggregation

● Metrics can be aggregated or rolled up based on defined rules

● Raw metrics can be dropped based on matching filters

Recording Rules vs Rollup Rules

● Recording rules

○ General purpose and support full PromQL

○ Expensive, runs against the query engine so affects other queries

○ All data needs to be stored so high storage cost

● Rollup rules

○ Much more efficient to run as an ingestion time aggregation

○ Only store the aggregates we need, drop other series

○ Automatic query speedup as aggregate can have same metric name

○ Does not support full PromQL but rather specific aggregates

Demo

Prometheus Query Logs

{

 "params": {

 "end": "2020-02-08T14:59:50.368Z",

 "query": "up == 0",

 "start": "2020-02-08T13:59:50.368Z",

 "step": 5

 },

 "stats": {

 "timings": {

 "evalTotalTime": 0.000447452,

 "execQueueTime": 7.599e-06,

 "execTotalTime": 0.000461232,

 "innerEvalTime": 0.000427033,

 "queryPreparationTime": 1.4177e-05,

 "resultSortTime": 6.48e-07

 }

 },

 "ts": "2020-02-08T14:59:50.387Z"

}

● Logs all queries run by the engine

● Information about where time was

spent in a query

High Cardinality Analyzer

● Offline process to generate recording and / or rollup rules

● Uses Prometheus query log to find candidates for aggregation

● Provides recommendations for recording rules or M3 aggregator rollup

and mapping rules to create to speedup expensive queries

High Cardinality Analyzer

● Go over days of Prometheus query logs

○ Find most commonly hit expensive queries

○ Check that the cost of the query is due to number of series

● Provide proposals of recording / rollup rules to create

○ User can configure the rules as necessary

● If recording rules, dashboards and other places need to be changed

● If rollup rules, queries will speed up automatically as the query now

captures the aggregate metric

Thank You
Q&A

http://bit.ly/m3slack

High Cardinality Analyzer https://github.com/chronosphereio/high-cardinality-analyzer

http://bit.ly/m3slack
https://github.com/chronosphereio/high-cardinality-analyzer

