

Analyzing Operational Data at Scale using ML at Intuit

Amit Kalamkar Vigith Maurice

Overview

- Intuit background
- Objective
- Problem
- Operational Data Lake
- Applications on Operational Data Lake
- Fuzzy Demo!
- What's next

Who we are

North America 2020

Kubernetes at Intuit

- 1200+ Services in Prod
- 200+ clusters (Intuit managed)
- 10k+ nodes
- 85k+ cpu cores
- 120k+ pods
- Open source Projects-Argo (CNCF incubation), Keiko, Admiral

Objective- Data driven insights

Virtual

Problem

- Silos of disjoint operational data generated by different tools for providing meaningful insights
- No standard way to correlate and process huge volumes of operational data
- Too many dashboards with no standardization across dashboards
- No easy way to apply standardized, scalable ML on high data volume

Now is the time

- Increased complexity due to dynamic cloud native platform with many inter-dependencies
- Potentially increased risks with greater deployment frequency on dynamic, distributed infrastructure
- **DevOps paradigm** requires specialized, data driven tooling for operability and observability

Operational Data Lake (ODL)

 Build a warehouse for clean, documented, and schematized operational data

North America 2020

KubeCon

CloudNativeCon

- Collects and publishes all aspects of an application's operational lifecycle data including development, build & test, production, security, monitoring, usage, to enable operational analytics and AIOps
- **Democratized Operational data** by any consumer at Intuit

Drives automation and faster, better operational decisions (e.g. incident response)

Self Service Analytics Platform

KubeCon North America 2020

Collection (Streaming)

Processing (with curation)

Realtime ML and Analytics

Storage and Retrieval

Self Service Platform

- Real time Ingestion through **Kafka** stream
- Batch loading of **structured Logs** using Cribl

Collection

Processing

• **Data Governance** in built and moderated by data stewards

- **Standardized ML platform** trained to detect anomalous measurements
- **Highlight anomalous behaviour** in metrics and data
- Guided debugging using anomaly score

- Cataloging (Apache Atlas) and scrubbing to remove and standardize fields
- **enrichment** using golden entity attribute (AssetID)
- **stream processing (Apache Beam)** for source JOINS and Summarization

- Standardization for visualizing and
 Triaging capabilities over generic UX
- Interactive exploration using OLAP (Druid) querying on real time data
- Long term stores (S3/ELK) for batch training

ODL Architecture

Applications on top of Operational data

KubeCon

CloudNativeCon

North America 2020

SSDLC REPORTING AND ENFORCEMENT

COST REPORTING AND ANALYSIS

FUZZY (Observability)

DEVELOPMENT VELOCITY

Fuzzy - Observability Application Deep Dive

Fuzzy- Speed up incident response

- Mean time to detect is too long
- Not able to quickly ascertain customer impact
- Not able to quickly isolate the source and root cause of an incident
- Large latency due to exponential growth in operational data.

Fuzzy- Charter

- Make it obvious what services are affected
- Make it obvious what is the causal service
- Make it obvious what is the causal event

- Enable **non-experts** to triage problems
- **Reduce MTTI** by order of Magnitude
- Reduce MTTR

How?

- Collect AWS CloudWatch and
 CloudTrail using Kafka
- K8s Audit logs, Objects and Events using Data Controllers
- Application **Timeseries Metrics** (Kafka)
- Sampled Open Telemetry **Traces** (Jaeger)

- Unsupervised ML models trained to detect anomalous measurements per service
- Highlight anomalous behaviour in per service and dependent services

- **Windowing** (Fixed and Sessions) for summarizations
- Correlate metrics using AssetID
- Write to **multiple stores** for quick retrieval (Redis/ES/Druid)

Processing

Collectio

- Personalized view for the services with Guided debugging using anomaly score
- **Hierarchical view** (Intuit, BU, Scrum) to group the impact at services level.
- Expose data over **GraphQL** for everyone

Fuzzy Architecture

ML Architecture

North America 2020

0 Metadata Models Model Trainers UI Storage Storage O OHTTP ► Þ|||4 January of Long-term raw data storage HTTP Interface П Pre-processing/ Streaming Publish ► [||d Dispatcher -D aggregation Detectors Adapters R**≜**w Stream Aggregated Stream Topic Pub-Subscribe Parition Support - DII 4 SPP On EventBus Demand Training Mid-term fast aggregated data Short-term cache storage

Demo

What's Next

- Support for onboarding Custom Metrics (BYOM)
- Self Serve Capability for open ended debugging (Unknown Unknown)
- Expand on-demand Anomaly score using ML
- Open Source

Thank You

