
Ryan Jarvinen, Red Hat

Admission Control,
We Have a Problem

bit.ly/k20ac
sched.co/ekBb

@RyanJ
Developer Advocate, Red Hat OpenShift

bit.ly/k20ac
sched.co/ekBb

⚠
Motive:
Sustainable productivity when developing

● A reliable distributed platform that allows me
to focus on my day job

Goals for this talk:

1. Understand the primary role of Admission Controllers

2. Understand typical use cases for Admission Control,
and when to avoid this topic

Goals
Usability Goal:

What’s the problem?

Agenda:

Part 1: Admission Control Basics

Part 2: Dynamic Admission Control

Part 3: When / How to avoid this topic

Part 1
Admission Control Basics

Admission Control Basics

Admission Controllers play a critical role in securing the Control Plane

NOPE!

Admission Control Basics

kube-apiserver

authentication

kube-
aggrigatorkube-

aggregator

etcd

impersonation

authorization

apiextensions-apiserver

404

CR handlers

admission

conversion &
defaulting

REST logic
GET

CREATE
LIST

UPDATE
DELETE
WATCH
PATCH

ou
tp

ut
 c

on
ve

rs
io

n

admission

va
lid

at
io

n

Admission Controllers play a critical role in securing the Control Plane:

pl
ug

in
s

pl
ug

in
s

in
pu

t c
on

ve
rs

io
n

aggregated apiservers mutating
webhooks

validating
webhooks

Admission Control Basics

Q: Wait… Is this why my Operators and CRDs fail to work correctly!?!

A: Possibly? Differences in Admission Controller setup are one of the most
common reasons why an Operator may fail to work correctly on a cluster

Q: How do I enable / disable Admission Control plugins?

A: Just use the --enable-admission-plugins and/or
--disable-admission-plugins flags when initializing kube-apiserver

Q: How do I find out which admission controllers
are currently enabled on my cluster?

A: kube-apiserver -h | grep admission-plugins

Docs:
https://k8s.io/docs/reference/access-authn-authz/admission-controllers

Admission Control Basics
Finding the defaults for your cluster:
minikube w/ API v1.18.2 (kubeadm):
1. minikube ssh
2. ps aux | grep api | head -n 1| sed -e \

's/.*\(-enable-admission-plugins[^]*\) .*$/\1/'

OpenShift (v4.5.4 w/ K8s v1.18.3):
1. kubectl get KubeAPIServers/cluster -o yaml | grep admission -A 10

-enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAcc
ount,DefaultStorageClass,DefaultTolerationSeconds,NodeRestriction,M
utatingAdmissionWebhook,ValidatingAdmissionWebhook,ResourceQuota

admission:
 pluginConfig:
 network.openshift.io/ExternalIPRanger:
 configuration:
 allowIngressIP: false
 apiVersion: network.openshift.io/v1
 kind: ExternalIPRangerAdmissionConfig
 network.openshift.io/RestrictedEndpointsAdmission:
 configuration:
 apiVersion: network.openshift.io/v1
 kind: RestrictedEndpointsAdmissionConfig

https://k8s.io/docs/reference/access-authn-authz/admission-controllers/
#what-does-each-admission-controller-do

Admission Control Basics
Admission controllers may be "validating", "mutating", or both!

kube-apiserver

authentication

kube-
aggrigatorkube-

aggregator

etcd

impersonation

authorization

apiextensions-apiserver

404

CR handlers

admission

conversion &
defaulting

REST logic
GET

CREATE
LIST

UPDATE
DELETE
WATCH
PATCH

ou
tp

ut
 c

on
ve

rs
io

n

va
lid

at
io

n

pl
ug

in
s

in
pu

t c
on

ve
rs

io
n

aggregated apiservers mutating
webhooks

validating
webhooks

Admission Control Basics
API writes can be automatically rewritten or coerced:

kube-apiserver

authentication

kube-
aggrigatorkube-

aggregator

etcd

impersonation

authorization

apiextensions-apiserver

404

CR handlers

admission

conversion &
defaulting

REST logic
GET

CREATE
LIST

UPDATE
DELETE
WATCH
PATCH

ou
tp

ut
 c

on
ve

rs
io

n

va
lid

at
io

n

pl
ug

in
s

in
pu

t c
on

ve
rs

io
n

aggregated apiservers mutating
webhooks

validating
webhooks

Admission Control Metaphor
Admission Controllers are similar to Kernel Modules in that they:

💥 Operate with elevated privilege scope

🔐 Are best configured by a system admin

⛔ Not a way to package or distribute application code

And, they likely require access to a modern API release to function as intended:

● Kubernetes v1.19 or newer is required for access to Pod Security Policies [beta]:
https://k8s.io/docs/concepts/policy/pod-security-policy/

● Kubernetes v1.16 or newer required for admissionregistration.k8s.io/v1:
https://k8s.io/docs/reference/access-authn-authz/extensible-admission-controllers/#prerequisites

https://k8s.io/docs/concepts/policy/pod-security-policy/

Admission Control Basics

● Understand how common Admission Controllers are enabled,
disabled, and configured for a cluster

● Understand how configuration of Admission Controllers can be used to
enforce basic security policies for a cluster

● Two phases, types of admission control: Validating, Mutating

● UX notes: It’s a bit like a sledgehammer -
Not designed to distribute quick/frequent policy changes

● #1 Use-case: Enforce consistent operational
rules for disparate clusters in a release pipeline

Part 1 Review:

Part 2
Dynamic Admission Control

Dynamic Admission Control

1. DynMutatingAdmissionWebhook, and ValidatingAdmissionWebhook
admission control plugins need to be enabled

2. When enabled, Kubernetes v1.16+ allows registration of Dynamic Admission
Control webhooks via admissionregistration.k8s.io/v1 via kind
MutatingWebhookConfiguration and
ValidatingWebhookConfiguration

3. The name of a MutatingWebhookConfiguration or a
ValidatingWebhookConfiguration object must be
a valid DNS name

Docs:
https://k8s.io/docs/reference/access-authn-authz/
extensible-admission-controllers/#webhook-configuration

Requirements for Dynamic Admission Control:

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#mutatingwebhookconfiguration-v1-admissionregistration-k8s-io
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.19/#validatingwebhookconfiguration-v1-admissionregistration-k8s-io
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#webhook-configuration
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#webhook-configuration

Dynamic Admission Control
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#configure-admission-webhooks-on-the-fly

Dynamic Admission Control
kube-apiserver

authentication

kube-
aggrigatorkube-

aggregator

etcd

impersonation

authorization

apiextensions-apiserver

404

CR handlers

admission

conversion &
defaulting

REST logic
GET

CREATE
LIST

UPDATE
DELETE
WATCH
PATCH

ou
tp

ut
 c

on
ve

rs
io

n

va
lid

at
io

n

pl
ug

in
s

in
pu

t c
on

ve
rs

io
n

aggregated apiservers mutating
webhooks

validating
webhooks

Dynamic Admission Control

GoClient Admission Webhook example:

https://k8s.io/docs/reference/access-authn-authz/extensible-admission-controllers/
#write-an-admission-webhook-server

● Always reject images tagged with “:latest”
● Require etcd member count to be an odd number between 1 and 11

Dynamic input validation use-cases:

It is possible to implement an Admission Control
Webhook server using any language, just make sure to
return a proper response before “timeoutSeconds”

https://k8s.io/docs/reference/access-authn-authz/extensible-admission-controllers/#write-an-admission-webhook-server
https://k8s.io/docs/reference/access-authn-authz/extensible-admission-controllers/#write-an-admission-webhook-server

Dynamic Admission Control

● Understand how Dynamic Admission Control webhooks are
used to validate or coerce write requests as they pass through
the API pipeline
○ The “Validate” phase will not begin until the Mutate phase has

concluded (when Mutate is available)

● Review security use cases and implications

Part 2 Review:

Part 3
When & How to avoid
Admission Controllers

Alternatives

Security Checklist:

Select the appropriate abstraction for your scope of work:

1. Establish an operational
 baseline for the cluster

➔
Admission

Control

3. Establish application controls
 for development productivity

Admin
Required

Updates
& Config

Plugins

CRDs Custom
Resources

2. Establish operational rules for
 platform services and CRs ➔ Operators

➔
App CRs,

Helm Charts Chart Validation

✮ Then, establish mechanisms that ensure operational
consistency throughout your release pipeline

Dynamic

Alternatives
Q: Why should I learn about Admission Controllers?

A: To establish strong security controls for shared-use clusters,
OR to help users find and adopt the appropriate tools for their scope of work

Q: Should I avoid writing (and maintaining) custom controllers that
impact the operational reliability of the core platform APIs?

A: Yes - Whenever possible!

Q: Should I use Helm or Application CRDs if
they are a viable option for my scope of work?

A: Yes - Whenever possible!

Alternatives

Is Helm is an option for you?

Use it!

Alternatives

Kubebuilder: github.com/kubernetes-sigs/kubebuilder
● Go

Operator Framework:operatorframework.io
● Go

✮ OpenAPI Spec can provide schema-based input
validation in the API pipeline (without introducing
a Dynamic Admission Control webhook)

, Ansible, Helm

Alternatives to Dynamic Admission Control:

OpenAPI spec
Example code: OpenAPI spec schema validation

https://github.com/jdob/visitors-operator/blob/master/deploy/crds/example_v1_visitorsapp_crd.yaml

Alternatives

● Application CRs and Helm charts offer control interfaces that do not
introduce the need for admin access privs (during normal operation)

● Consider using Kubebuilder or Operator SDK to
provide validation and/or translation of API requests
when it’s an option for you

● Use OpenAPI Spec to provide schema-based input
validation for Custom Resources

Part 3 Review:

● A reliable distributed platform that allows me
to focus on my day job

Goals for this talk:

1. Understand the primary role of Admission Controllers

2. Understand typical use cases for Admission Control,
and when to avoid this topic

Review
Motivation:

Review

★ API security controls (for platform admins)

★ Kubernetes API Request Translator

★ Kubernetes API Request Validator

1. Primary Role of Admission Control:

Review

Security:
● Deny “privileged” containers
● Deny escalation via abuse of hostPath, hostPID

Dynamic input validation:
● Always reject images tagged with “:latest”
● Require etcd members to be an odd number

(between 1 and 11)

Purpose:
● Ensure operational consistency by

enforcing basic security and policy for your platform
✮ Standardize policy between clusters in a pipeline

2. Use Cases for Admission Control:

Review
3. Alternatives to DIY Admission Control:
✮ App developers should stick with Helm or Application CRDs,

avoid making unnecessary modifications to the API pipeline

✮ Consider using Kubebuilder or Operator SDK for
dynamic validation and/or translation of API requests

✮ Use OpenAPI Spec to provide schema-based input validation

✮ Compare Kubernetes hosting providers (and/or distributions)
that include a strong set of Admission Control defaults,
and a clear plan for distributing updates
✩ http://learn.openshift.com (1 hour session)
✩ http://openshift.com/try

http://learn.openshift.com
http://openshift.com/try

Links & Resources

Recommended Talks:
● The Path Less Traveled: Abusing Kubernetes Defaults

https://youtu.be/gtaaONq-XGY

● Customizing and Extending the Kubernetes API with Admission Controllers
https://youtu.be/P7QAfjdbogY

● Admission Webhooks: Configuration and Debugging Best Practices
https://youtu.be/r_v07P8Go6w

● Deep Dive: API Machinery SIG
https://youtu.be/kz8BMn9_hk8

Admission Control:
http://k8s.io/docs/reference/access-authn-authz/admission-controllers

Dynamic Admission Control:
https://k8s.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Vulnerability Disclosures: https://k8s.io/security

Q & A

Thank You!
@RyanJ at Red Hat

bit.ly/k20ac
sched.co/ekBb

Ryan Jarvinen, Red Hat

Admission Control,
We Have a Problem

bit.ly/k20ac
sched.co/ekBb

