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Deep Learning Inference Requirements
As a data scientist or ML engineer
● I want to serve standard deep learning models, like TensorFlow or PyTorch, with 

minimal efforts and at scale in a unified way.
● I can bring in custom pre/post processing before and after the prediction.
● I can accelerate inference by deploying models on GPUs.
● GPUs are powerful compute resources, but deploying a single model per GPU can 

under-utilize GPUs. I want an easy way to serve multiple models behind a unified 
endpoint which can scale to hundreds or thousands of models.

● I want to autoscale based on workload and allow scale to 0 to save resources.
● I want to deploy models with zero downtime and can use multiple deployment 

strategies like shadow, canary, and blue/green rollouts.
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KFServing
● A project founded by Google, NVIDIA, Seldon, Bloomberg, Microsoft, and 

IBM under Kubeflow.
● Standard deployment across deep learning frameworks on Kubernetes with 

high performance.
● Create simple intuitive and consistent experience to deploy inference 

services.
● A complete inference story with feature transformation, prediction, and 

explanation.
● Serverless inference with GPU Autoscaling to scale down and up from 0!
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KFServing Design Patterns

● Knative autoscaler based on request volume, scale down and up from 0.
● Extract common model serving features like model pulling, logging, 

batching, pipeline to KFServing agent sidecar, so that all model servers 
can benefit from the serving features provided by KFServing.

● Knative immutable deployment and revision management to ensure safe 
production rollouts.

● Blue/Green, canary rollouts, progressive rollout.
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KFServing Architecture
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KFServing v1beta1 Release
● Stable v1beta1 API to support standard model serving for TensorFlow, 

PyTorch, scikit-learn and XGBoost with v2 prediction protocol.
● Provide a custom serving framework to allow users to bring in own custom 

serving code while benefit all the serving features that KFServing provides.
● Allows a simple data science-friendly interface, while provide flexibility of 

specifying pod template fields when needed.
● Complete serving story for pre/post processing, inference and explanation.
● Multi-model serving to improve resource utilization.
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TFServing & TorchServe

● Flexible, high-performance serving 
system for TensorFlow 

● Saved model format and graphdef
● Written in C++, supports both REST 

and gRPC
● https://www.tensorflow.org/tfx/guide/

serving

● Flexible and easy way for serving 
PyTorch models

● Supports serving eager models and 
JIT saved TorchScript models

● REST Inference and management 
API

● https://pytorch.org/serve/

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://pytorch.org/serve/
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KFServing v1beta1 API
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService 
metadata:
  name: flowers
spec:
  predictor:
    tensorflow:
      storageUri: 
“gs://kfserving-samples/models/tensorflow/flowers”
      ports: 
        containerPort: 9000 #gRPC port
        name: h2c 

apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService 
metadata:
  name: cifar10
spec:
  predictor:
    pytorch:
      storageUri: 
“gs://kfserving-samples/models/pytorch/cifar10”
      env:
        name: OMP_NUM_THREADS
        value: “1” 
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NVIDIA Triton Inference Server

● NVIDIA’s highly-optimized model runtime on GPUs
● Supports model repository, versioning
● Dynamic batching
● Concurrent model execution
● Supports TensorFlow, TorchScript, ONNX models
● Written in C++, supports both REST and gRPC
● TensorRT Optimizer can further bring down inference latency
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KFServing v1beta1 API: Triton Inference Server
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService 
metadata:
  name: triton-cifar10
spec:
  predictor:
    triton:
      storageUri: 
“gs://kfserving-samples/models/torchscript/cifar”
      env: 
        name: OMP_NUM_THREADS
        value: “1”
      resources:
        limits:
          nvidia.com/gpu: “1”
          memory: 4Gi
          cpu: 1 

• OMP_NUM_THREADS is set to 1 to improve inference 

performance and reduces the resource contention.

• StorageUri is set to the model repository.

• “nvidia.com/gpu” is specified to deploy the model 

onto GPU and you can also add node affinity or 

tolerance to schedule to particular node such as 

T4 GPU.
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Bloomberg Help Desk Smart Resource
● Customer service reps are pushed content 

to help answer questions in the Smart 
Resource window

● All content is curated for accuracy

● How to assist reps provide answers with
○ Higher quality
○ Faster speed
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Fine-tuned BERT for Question Similarity
● Data: Categorized and annotated FAQs

○ Within-category annotated questions pairs: similar and not similar
○ Cross-category questions: not similar

● Classification problem
○ Input: two questions
○ Output: similarity score (Similar or not)

● Data mix strategy
○ 50% within-category pairs annotated as “Similar”
○ 25% within-category pairs annotated as “Not Similar”
○ 25% cross-category pairs without annotation
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Challengings Serving BERT Models on Production
● BERT requires significant compute during inference（100 million 

parameters). 

● Requires pre/post processing before and after the inference.

● Real-time applications, like conversational AI, require low latency.

● Batch evaluation on GPU needs to enable scale down to 0.

● It is much faster on GPU, but how do you better utilize the GPU resources 
and scale to serve thousands of BERT models?
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Deploy BERT Model on KFServing
● Deploy BERT Model on GPU gets 20x speed up.

● Allows bringing custom code for pre/post processing and then calls out to 
TensorFlow Serving or Triton Inference Server for inference.

● Safe production rollout with Blue/Green and Canary strategy.

● Autoscale based on QPS, scale to 0 after no requests are sent.

● Multi-model serving to improve GPU utilization.
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Performance with single Triton pod on GPU

● SQUAD large 24 layers, fp16, Sequence Length 128 on TESLA V100 

Concurrency p50(ms) p90(ms) p95(ms) p99(ms) Throughput

1 45.395 51.736 53.188 56.553 21.6667

2 54.751 66.257 69.182 76.07 36.3333

3 80.942 94.099 95.419 101.189 37.6667

4 100.401 115.389 119.428 134.946 40

5 128.292 145.352 148.42 152.614 39

6 161.971 176.169 178.041 180.996 37

7 192.088 212.405 217.393 223.359 36.6667

8 202.048 228.844 236.175 243.832 39.6667

9 237.9 257.111 262.417 254.646 38

10 277.829 294.093 298.53 301.348 36.6667
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Autoscale on GPUs
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService 
metadata:
  name: triton-bert
spec:
  predictor: 
    containerConcurrency: 1
    triton:
      resources:
        limits:
          nvidia.com/gpu: “1”
          cpu: 1
          memory: 8Gi
      storageUri: 
“gs://kfserving-examples/models/triton/bert”
      

• Set Container Concurrency to 1 as you can see 

from previous performance result on a single pod 

that latency starts to increase when sending 

concurrent requests and throughput does not 

increase linearly. 
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Enable Autoscaling

● Container Concurrency 1
concurrency p50(ms) p90(ms) p95(ms) p99(ms) Throughput

1 48.83 52.46 56.436 61.727 18
2 53.413 65.757 68.122 76.23 35.2
3 47.286 53.822 56.118 59.934 63.8
4 48.732 65.929 72.755 77.31 77.2
5 48.976 70.189 77.676 86.478 93.8
6 52.51 75.371 82.646 95.059 106.2
7 56.277 88.548 98.282 110.916 112.8
8 65.387 111.71 139.532 156.64 111.4
9 68.651 147.65 161.35 380.89 103.4

10 46.249 58.326 63.352 75.646 199
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Enable Autoscaling

● Container Concurrency 1, Min Replica 1

• It is not exactly linear because of the container 

cold start up time, on startup InferenceService 

loads a model from remote storage.

• Model can be cached on PVC so that each pod does 

not need to load the model individually. 
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How does GPU Autoscaling work ?
● Autoscale based on GPU metrics can 

be hard, Knative autoscaler works 
based on in-flight request concurrency.

● Target concurrency vs. Observed 
concurrency: If the target concurrency 
is 1 and observed concurrency is 10, 
then autoscaler scales up to 10 pods to 
process the load.

● Scale down to minReplica or 0 when 
there is no traffic.
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Batch Inference
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService 
metadata:
  name: triton-bert
spec:
  predictor:
    batcher:
      maxBatchSize: 16
      maxLatency: 500
    minReplica: 0
    triton:
      resources:
        limits:
          nvidia.com/gpu: “1”
          cpu: 1
          memory: 8Gi
      storageUri: 
“gs://kfserving-examples/models/triton/bert”
      

• Server side batching can help increase the 

throughput and the sidecar agent waits for 

reaching max batch size or max latency to create 

the batch. 

• We can enable autoscale down to 0 after batch 

inference is done to save resources and 

automatically scale up once inference workload 

starts again.
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Inference Service with Transformer

● Often the time you need pre/post 
processing before and after 
inference.

● KFServing provides a way to 
deploy transformers along with 
predictors, so you can deploy 
them as a single unit and scale 
differently with the standardized 
inference protocol.

Input 
transformation

Output 
transformation

Prediction

Tensor in

Tensor out
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Inference Service with Transformer
apiVersion: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
  name: bert-serving
spec:
  transformer:
    custom:
      containers:
      - image: bert-transformer:v1
        env:

    name: STORAGE_URI
    value: s3://examples/bert_transformer

  predictor:
    triton:
      storageUri: s3://examples/bert
      runtimeVersion: 20.09-py3
      resources:
        limits:
          nvidia.com/gpu: 1

Triton Inference Server

def preprocess(self, inputs: Dict) -> Dict:

    self.doc_tokens = 
data_processing.convert_doc_tokens(self.short_paragraph_te
xt)
    self.features = 
data_processing.convert_examples_to_features(self.doc_toke
ns, inputs["instances"][0], self.tokenizer, 128, 128, 64)
    return self.features

def postprocess(self, result: Dict)-> Dict:

    (prediction, nbest_json, scores_diff_json) = \
  data_processing.get_predictions(self.doc_tokens, 
self.features, start_logits, end_logits, n_best_size, 
max_answer_length)

     return {"predictions": prediction, "prob": 
nbest_json[0]['probability'] * 100.0

    

Pre/Post Processing
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Improve GPU/Resource Utilization

● There are common use cases where you want to serve many models for 
different categories or personalization.

● Schedule single model onto an InferenceService can be expensive and 
utilization is usually low for serving a single model on a GPU.

● TFServing, TorchServer, Triton Inference Server all allow co-locating multiple 
models on the same GPU in the container, KFServing adds a TrainedModel 
CR to enable scheduling models on to the InferenceService at scale.

● All models assigned to the same inference service CR can be accessed 
under the same URL.
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Multi-Model Serving

● Decouple trained model and inference service so you can deploy multiple 
models on the inference service.

● Each pod can host multiple models under memory constraints; inference can 
be executed in parallel.

● Provide health check for each model endpoint and reflect model status in 
TrainedModel CR status.

● Auto-sharding when the given inference service instance is at memory 
capacity.
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Trained Model CR

apiVerson: serving.kubeflow.org/v1alpha1

kind: TrainedModel 

metadata:

  name: sports-news

spec:

  inferenceService: news-category-service

  model:

     storageUri: s3://news-category/sports

     framework: pytorch

     resources:

       memory: 1Gi  
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Multi-Model Serving

news-shard-0

Model
Puller 
Sidecar

Model
Puller 
Sidecar

ConfigMap

name:news-shard-0

sports: {

   s3://news/sports

   Memory: 1Gi

}

covid: {

   s3://news/covid

   Memory: 1Gi

}

Model
Puller 
Sidecar

Model
Puller 
Sidecar

Trained Model Scheduler

ConfigMap

name:news-shard-1

finance: {

   s3://news/finance

   Memory: 1Gi

}

gov: {

   s3://news/covid

   Memory: 1Gi

}

news-shard-0 news-shard-1 news-shard-1

http://news.kfs.example.com/v2/models/$model

Memory 
limit:
2Gi

Memory 
limit:
2GB

Shard based on 
memory limit
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Scalability for Multi-Model Serving

● For a single Istio Ingress gateway, we have limits about running ~2K 
services, but we want to scale to 100K models.

● Can we support 100K trained model CR? We are bound to the # CR limit on 
etcd. 

● Even we can deploy 100K models on 2K services, we may still hit the limit 
for the number of virtual services we can create on the gateway for routing 
the models.

● Phase 2 MMS is to find out these limits.



KFServing Inference Protocol - Version 2
(aka KFServing V2 Dataplane)

David Goodwin, NVIDIA
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KFServing Inference Protocol - Version 2
● Why a standard protocol?

○ Inference clients can talk to multiple servers, increase portability
○ Inference servers expand client base, increase utility
○ Clients and servers operate seamlessly on platforms that have standardized around this 

protocol.

● Requirements
○ Support both ease-of-use and high performance
○ Extensible with both standard and server-specific customization
○ GRPC and HTTP/REST



Core Protocol and Extensions
● Core protocol required for all conforming servers

○ Server Live and Ready
○ Server Metadata
○ Model Ready
○ Model Metadata
○ Inference

● Extensions are optional
○ Currently no standard extensions
○ Inference server implementations can provide their own extensions



Live and Ready
● Server Health

○ Indicate that server is live and ready to receive requests
○ Directly use for livenessProbe and readinessProbe

● Model Ready - is specific model ready to receive inference requests

● HTTP/REST returns 200 or 40x status code
$ curl -v infer.com/v2/health/live
…
< HTTP/1.1 200 OK

● GRPC has dedicated endpoints, for example:
        rpc ServerLive(ServerLiveRequest) returns (ServerLiveResponse) {}



Metadata
● Server Metadata - name, version, extensions
● Model Metadata - name, versions, inputs, outputs

$ curl infer.com/v2/models/resnet50
{
  "name" : "resnet50",
  "versions" : [ "1" ],
  "platform" : "tensorflow_graphdef",
  "inputs" : [ {
        "name" : "input",
        "shape" : [ -1, 224, 224, 3 ],
        "datatype" : "FP32"
     } ],
  "outputs" : [ {
        "name" : "resnet50/predictions/Softmax",
        "shape" : [ -1, 1000 ],
        "datatype" : "FP32"
     } ]
}



Inference
● Send input tensors to specific model and get back output tensors

POST /v2/models/resnet50/infer
{ 
  "inputs": [ {
    "name" : "input",
    "shape" : [1, 224, 224, 3],
    "datatype" : "FP32",
    "data" : [75.0,87.0,86.0 … ]
  ]
}

{
  "model_name" : "resnet50",
  "model_version" : "1",
  "outputs" : [ {
    "name" : "resnet50/predictions/Softmax",
    "datatype" : "BYTES",
    "shape" : [1,1],
    "data" : ["0.826413:504:COFFEE MUG"] }
  ]
}



Triton Inference Server
● Multi-framework, multi-model, CPU and GPU
● Implements KFServing Inference Protocol as well as extensions

● Per-model statistics endpoint
● Model repository management (load / unload models)
● Support sequences of related inference request (stateful inference)
● Communicate tensors via system and GPU shared memory
● Communicate tensors using binary data (HTTP/REST)



High-Performance HTTP/JSON
● HTTP/REST easy to use, but poor performance encoding tensors with JSON 
● Triton binary data extension resolves

● For 128 requests, local network, provides ~ 17x speedup

POST /v2/models/resnet50/infer
{ 
  "inputs": [ {
    "name" : "input",
    "shape" : [1, 224, 224, 3],
    "datatype" : "FP32",
    "data" : [75.0,87.0,86.0 … ]
  ]
}

Encode and decode 150k+ FP numbers to 
send a single small image

POST /v2/models/resnet50/infer
  'Inference-Header-Content-Length': 123
{ 
  "inputs": [ {
    "name" : "input",
    "shape" : [1, 224, 224, 3],
    "datatype" : "FP32",
    "parameters":{"binary_data_size":602112}
  ]
}<602112 bytes of binary data>

Extension allows "raw" data to be sent after 
JSON header. Eliminates encode and decode 
overhead



Inference Protocol Reference
● KFServing Inference Protocol - Version 2

https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2

● Triton Inference Server implements core protocol plus many extensions

https://github.com/triton-inference-server/server/blob/master/docs/inference_p
rotocols.md

https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2
https://github.com/triton-inference-server/server/blob/master/docs/inference_protocols.md
https://github.com/triton-inference-server/server/blob/master/docs/inference_protocols.md


KFServing Reference

● KFServing v0.5.0 with v1beta1 API and inference v2 protocol

RFC:https://docs.google.com/document/u/1/d/1ktiO7gWohq19C_rixXH0T_D9
1TjkrQELlQjlkvSefVc

● Alpha version of Multi-Model Serving.
● GitHub: https://github.com/kubeflow/kfserving
● Examples: https://github.com/kubeflow/kfserving/tree/master/docs/samples
● Open community and we love your contributions! 

https://docs.google.com/document/u/1/d/1ktiO7gWohq19C_rixXH0T_D91TjkrQELlQjlkvSefVc/edit#
https://docs.google.com/document/u/1/d/1ktiO7gWohq19C_rixXH0T_D91TjkrQELlQjlkvSefVc/edit#
https://github.com/kubeflow/kfserving
https://github.com/kubeflow/kfserving/tree/master/docs/samples

