
Dan Sun, Bloomberg
David Goodwin, NVIDIA

Accelerate and Standardize Deep Learning
Inference with KFServing

Agenda

Accelerate Deep Learning Inference with KFServing
- Dan Sun, Bloomberg

KFServing V2 Inference Protocol
- David Goodwin, NVIDIA

© 2020 Bloomberg Finance L.P. All rights reserved.

Deep Learning Inference Requirements
As a data scientist or ML engineer
● I want to serve standard deep learning models, like TensorFlow or PyTorch, with

minimal efforts and at scale in a unified way.
● I can bring in custom pre/post processing before and after the prediction.
● I can accelerate inference by deploying models on GPUs.
● GPUs are powerful compute resources, but deploying a single model per GPU can

under-utilize GPUs. I want an easy way to serve multiple models behind a unified
endpoint which can scale to hundreds or thousands of models.

● I want to autoscale based on workload and allow scale to 0 to save resources.
● I want to deploy models with zero downtime and can use multiple deployment

strategies like shadow, canary, and blue/green rollouts.

© 2020 Bloomberg Finance L.P. All rights reserved.

KFServing
● A project founded by Google, NVIDIA, Seldon, Bloomberg, Microsoft, and

IBM under Kubeflow.
● Standard deployment across deep learning frameworks on Kubernetes with

high performance.
● Create simple intuitive and consistent experience to deploy inference

services.
● A complete inference story with feature transformation, prediction, and

explanation.
● Serverless inference with GPU Autoscaling to scale down and up from 0!

© 2020 Bloomberg Finance L.P. All rights reserved.

KFServing Design Patterns

● Knative autoscaler based on request volume, scale down and up from 0.
● Extract common model serving features like model pulling, logging,

batching, pipeline to KFServing agent sidecar, so that all model servers
can benefit from the serving features provided by KFServing.

● Knative immutable deployment and revision management to ensure safe
production rollouts.

● Blue/Green, canary rollouts, progressive rollout.

© 2020 Bloomberg Finance L.P. All rights reserved.

KFServing Architecture

© 2020 Bloomberg Finance L.P. All rights reserved.

KFServing v1beta1 Release
● Stable v1beta1 API to support standard model serving for TensorFlow,

PyTorch, scikit-learn and XGBoost with v2 prediction protocol.
● Provide a custom serving framework to allow users to bring in own custom

serving code while benefit all the serving features that KFServing provides.
● Allows a simple data science-friendly interface, while provide flexibility of

specifying pod template fields when needed.
● Complete serving story for pre/post processing, inference and explanation.
● Multi-model serving to improve resource utilization.

© 2020 Bloomberg Finance L.P. All rights reserved.

TFServing & TorchServe

● Flexible, high-performance serving
system for TensorFlow

● Saved model format and graphdef
● Written in C++, supports both REST

and gRPC
● https://www.tensorflow.org/tfx/guide/

serving

● Flexible and easy way for serving
PyTorch models

● Supports serving eager models and
JIT saved TorchScript models

● REST Inference and management
API

● https://pytorch.org/serve/

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://pytorch.org/serve/

© 2020 Bloomberg Finance L.P. All rights reserved.

KFServing v1beta1 API
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
 name: flowers
spec:
 predictor:
 tensorflow:
 storageUri:
“gs://kfserving-samples/models/tensorflow/flowers”
 ports:
 containerPort: 9000 #gRPC port
 name: h2c

apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
 name: cifar10
spec:
 predictor:
 pytorch:
 storageUri:
“gs://kfserving-samples/models/pytorch/cifar10”
 env:
 name: OMP_NUM_THREADS
 value: “1”

© 2020 Bloomberg Finance L.P. All rights reserved.

NVIDIA Triton Inference Server

● NVIDIA’s highly-optimized model runtime on GPUs
● Supports model repository, versioning
● Dynamic batching
● Concurrent model execution
● Supports TensorFlow, TorchScript, ONNX models
● Written in C++, supports both REST and gRPC
● TensorRT Optimizer can further bring down inference latency

© 2020 Bloomberg Finance L.P. All rights reserved.

KFServing v1beta1 API: Triton Inference Server
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
 name: triton-cifar10
spec:
 predictor:
 triton:
 storageUri:
“gs://kfserving-samples/models/torchscript/cifar”
 env:
 name: OMP_NUM_THREADS
 value: “1”
 resources:
 limits:
 nvidia.com/gpu: “1”
 memory: 4Gi
 cpu: 1

• OMP_NUM_THREADS is set to 1 to improve inference

performance and reduces the resource contention.

• StorageUri is set to the model repository.

• “nvidia.com/gpu” is specified to deploy the model

onto GPU and you can also add node affinity or

tolerance to schedule to particular node such as

T4 GPU.

© 2020 Bloomberg Finance L.P. All rights reserved.

Bloomberg Help Desk Smart Resource
● Customer service reps are pushed content

to help answer questions in the Smart
Resource window

● All content is curated for accuracy

● How to assist reps provide answers with
○ Higher quality
○ Faster speed

© 2020 Bloomberg Finance L.P. All rights reserved.

Fine-tuned BERT for Question Similarity
● Data: Categorized and annotated FAQs

○ Within-category annotated questions pairs: similar and not similar
○ Cross-category questions: not similar

● Classification problem
○ Input: two questions
○ Output: similarity score (Similar or not)

● Data mix strategy
○ 50% within-category pairs annotated as “Similar”
○ 25% within-category pairs annotated as “Not Similar”
○ 25% cross-category pairs without annotation

© 2020 Bloomberg Finance L.P. All rights reserved.

Challengings Serving BERT Models on Production
● BERT requires significant compute during inference（100 million

parameters).

● Requires pre/post processing before and after the inference.

● Real-time applications, like conversational AI, require low latency.

● Batch evaluation on GPU needs to enable scale down to 0.

● It is much faster on GPU, but how do you better utilize the GPU resources
and scale to serve thousands of BERT models?

© 2020 Bloomberg Finance L.P. All rights reserved.

Deploy BERT Model on KFServing
● Deploy BERT Model on GPU gets 20x speed up.

● Allows bringing custom code for pre/post processing and then calls out to
TensorFlow Serving or Triton Inference Server for inference.

● Safe production rollout with Blue/Green and Canary strategy.

● Autoscale based on QPS, scale to 0 after no requests are sent.

● Multi-model serving to improve GPU utilization.

© 2020 Bloomberg Finance L.P. All rights reserved.

Performance with single Triton pod on GPU

● SQUAD large 24 layers, fp16, Sequence Length 128 on TESLA V100

Concurrency p50(ms) p90(ms) p95(ms) p99(ms) Throughput

1 45.395 51.736 53.188 56.553 21.6667

2 54.751 66.257 69.182 76.07 36.3333

3 80.942 94.099 95.419 101.189 37.6667

4 100.401 115.389 119.428 134.946 40

5 128.292 145.352 148.42 152.614 39

6 161.971 176.169 178.041 180.996 37

7 192.088 212.405 217.393 223.359 36.6667

8 202.048 228.844 236.175 243.832 39.6667

9 237.9 257.111 262.417 254.646 38

10 277.829 294.093 298.53 301.348 36.6667

© 2020 Bloomberg Finance L.P. All rights reserved.

Autoscale on GPUs
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
 name: triton-bert
spec:
 predictor:
 containerConcurrency: 1
 triton:
 resources:
 limits:
 nvidia.com/gpu: “1”
 cpu: 1
 memory: 8Gi
 storageUri:
“gs://kfserving-examples/models/triton/bert”

• Set Container Concurrency to 1 as you can see

from previous performance result on a single pod

that latency starts to increase when sending

concurrent requests and throughput does not

increase linearly.

© 2020 Bloomberg Finance L.P. All rights reserved.

Enable Autoscaling

● Container Concurrency 1
concurrency p50(ms) p90(ms) p95(ms) p99(ms) Throughput

1 48.83 52.46 56.436 61.727 18
2 53.413 65.757 68.122 76.23 35.2
3 47.286 53.822 56.118 59.934 63.8
4 48.732 65.929 72.755 77.31 77.2
5 48.976 70.189 77.676 86.478 93.8
6 52.51 75.371 82.646 95.059 106.2
7 56.277 88.548 98.282 110.916 112.8
8 65.387 111.71 139.532 156.64 111.4
9 68.651 147.65 161.35 380.89 103.4

10 46.249 58.326 63.352 75.646 199

© 2020 Bloomberg Finance L.P. All rights reserved.

Enable Autoscaling

● Container Concurrency 1, Min Replica 1

• It is not exactly linear because of the container

cold start up time, on startup InferenceService

loads a model from remote storage.

• Model can be cached on PVC so that each pod does

not need to load the model individually.

© 2020 Bloomberg Finance L.P. All rights reserved.

How does GPU Autoscaling work ?
● Autoscale based on GPU metrics can

be hard, Knative autoscaler works
based on in-flight request concurrency.

● Target concurrency vs. Observed
concurrency: If the target concurrency
is 1 and observed concurrency is 10,
then autoscaler scales up to 10 pods to
process the load.

● Scale down to minReplica or 0 when
there is no traffic.

© 2020 Bloomberg Finance L.P. All rights reserved.

Batch Inference
apiVerson: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
 name: triton-bert
spec:
 predictor:
 batcher:
 maxBatchSize: 16
 maxLatency: 500
 minReplica: 0
 triton:
 resources:
 limits:
 nvidia.com/gpu: “1”
 cpu: 1
 memory: 8Gi
 storageUri:
“gs://kfserving-examples/models/triton/bert”

• Server side batching can help increase the

throughput and the sidecar agent waits for

reaching max batch size or max latency to create

the batch.

• We can enable autoscale down to 0 after batch

inference is done to save resources and

automatically scale up once inference workload

starts again.

© 2020 Bloomberg Finance L.P. All rights reserved.

Inference Service with Transformer

● Often the time you need pre/post
processing before and after
inference.

● KFServing provides a way to
deploy transformers along with
predictors, so you can deploy
them as a single unit and scale
differently with the standardized
inference protocol.

Input
transformation

Output
transformation

Prediction

Tensor in

Tensor out

© 2020 Bloomberg Finance L.P. All rights reserved.

Inference Service with Transformer
apiVersion: serving.kubeflow.org/v1beta1
kind: InferenceService
metadata:
 name: bert-serving
spec:
 transformer:
 custom:
 containers:
 - image: bert-transformer:v1
 env:

 name: STORAGE_URI
 value: s3://examples/bert_transformer

 predictor:
 triton:
 storageUri: s3://examples/bert
 runtimeVersion: 20.09-py3
 resources:
 limits:
 nvidia.com/gpu: 1

Triton Inference Server

def preprocess(self, inputs: Dict) -> Dict:

 self.doc_tokens =
data_processing.convert_doc_tokens(self.short_paragraph_te
xt)
 self.features =
data_processing.convert_examples_to_features(self.doc_toke
ns, inputs["instances"][0], self.tokenizer, 128, 128, 64)
 return self.features

def postprocess(self, result: Dict)-> Dict:

 (prediction, nbest_json, scores_diff_json) = \
 data_processing.get_predictions(self.doc_tokens,
self.features, start_logits, end_logits, n_best_size,
max_answer_length)

 return {"predictions": prediction, "prob":
nbest_json[0]['probability'] * 100.0

Pre/Post Processing

© 2020 Bloomberg Finance L.P. All rights reserved.

Improve GPU/Resource Utilization

● There are common use cases where you want to serve many models for
different categories or personalization.

● Schedule single model onto an InferenceService can be expensive and
utilization is usually low for serving a single model on a GPU.

● TFServing, TorchServer, Triton Inference Server all allow co-locating multiple
models on the same GPU in the container, KFServing adds a TrainedModel
CR to enable scheduling models on to the InferenceService at scale.

● All models assigned to the same inference service CR can be accessed
under the same URL.

© 2020 Bloomberg Finance L.P. All rights reserved.

Multi-Model Serving

● Decouple trained model and inference service so you can deploy multiple
models on the inference service.

● Each pod can host multiple models under memory constraints; inference can
be executed in parallel.

● Provide health check for each model endpoint and reflect model status in
TrainedModel CR status.

● Auto-sharding when the given inference service instance is at memory
capacity.

© 2020 Bloomberg Finance L.P. All rights reserved.

Trained Model CR

apiVerson: serving.kubeflow.org/v1alpha1

kind: TrainedModel

metadata:

 name: sports-news

spec:

 inferenceService: news-category-service

 model:

 storageUri: s3://news-category/sports

 framework: pytorch

 resources:

 memory: 1Gi

© 2020 Bloomberg Finance L.P. All rights reserved.

Multi-Model Serving

news-shard-0

Model
Puller
Sidecar

Model
Puller
Sidecar

ConfigMap

name:news-shard-0

sports: {

 s3://news/sports

 Memory: 1Gi

}

covid: {

 s3://news/covid

 Memory: 1Gi

}

Model
Puller
Sidecar

Model
Puller
Sidecar

Trained Model Scheduler

ConfigMap

name:news-shard-1

finance: {

 s3://news/finance

 Memory: 1Gi

}

gov: {

 s3://news/covid

 Memory: 1Gi

}

news-shard-0 news-shard-1 news-shard-1

http://news.kfs.example.com/v2/models/$model

Memory
limit:
2Gi

Memory
limit:
2GB

Shard based on
memory limit

© 2020 Bloomberg Finance L.P. All rights reserved.

Scalability for Multi-Model Serving

● For a single Istio Ingress gateway, we have limits about running ~2K
services, but we want to scale to 100K models.

● Can we support 100K trained model CR? We are bound to the # CR limit on
etcd.

● Even we can deploy 100K models on 2K services, we may still hit the limit
for the number of virtual services we can create on the gateway for routing
the models.

● Phase 2 MMS is to find out these limits.

KFServing Inference Protocol - Version 2
(aka KFServing V2 Dataplane)

David Goodwin, NVIDIA

Protocol Domain - Inference Service

C
lie

nt

 R
E

C
C

lie
nt

 N
LP

A
P

I:
A

S
R ATTIS

(CPU/ GPU)

Load Balancer

Containerized
Inference
Service
(CPU/ GPU)

Clients

Pre
Processing

Post
Processing

Cluster
Metrics serviceAuto scaler

GPU

Model Repository
Persistent Volume

Training, optimization,
validation flow Model Repository

(Network Storage Location)

GPU

GPU

GPU

Multiple
Workloads

KFServing Inference Protocol - Version 2
● Why a standard protocol?

○ Inference clients can talk to multiple servers, increase portability
○ Inference servers expand client base, increase utility
○ Clients and servers operate seamlessly on platforms that have standardized around this

protocol.

● Requirements
○ Support both ease-of-use and high performance
○ Extensible with both standard and server-specific customization
○ GRPC and HTTP/REST

Core Protocol and Extensions
● Core protocol required for all conforming servers

○ Server Live and Ready
○ Server Metadata
○ Model Ready
○ Model Metadata
○ Inference

● Extensions are optional
○ Currently no standard extensions
○ Inference server implementations can provide their own extensions

Live and Ready
● Server Health

○ Indicate that server is live and ready to receive requests
○ Directly use for livenessProbe and readinessProbe

● Model Ready - is specific model ready to receive inference requests

● HTTP/REST returns 200 or 40x status code
$ curl -v infer.com/v2/health/live
…
< HTTP/1.1 200 OK

● GRPC has dedicated endpoints, for example:
 rpc ServerLive(ServerLiveRequest) returns (ServerLiveResponse) {}

Metadata
● Server Metadata - name, version, extensions
● Model Metadata - name, versions, inputs, outputs

$ curl infer.com/v2/models/resnet50
{
 "name" : "resnet50",
 "versions" : ["1"],
 "platform" : "tensorflow_graphdef",
 "inputs" : [{
 "name" : "input",
 "shape" : [-1, 224, 224, 3],
 "datatype" : "FP32"
 }],
 "outputs" : [{
 "name" : "resnet50/predictions/Softmax",
 "shape" : [-1, 1000],
 "datatype" : "FP32"
 }]
}

Inference
● Send input tensors to specific model and get back output tensors

POST /v2/models/resnet50/infer
{
 "inputs": [{
 "name" : "input",
 "shape" : [1, 224, 224, 3],
 "datatype" : "FP32",
 "data" : [75.0,87.0,86.0 …]
]
}

{
 "model_name" : "resnet50",
 "model_version" : "1",
 "outputs" : [{
 "name" : "resnet50/predictions/Softmax",
 "datatype" : "BYTES",
 "shape" : [1,1],
 "data" : ["0.826413:504:COFFEE MUG"] }
]
}

Triton Inference Server
● Multi-framework, multi-model, CPU and GPU
● Implements KFServing Inference Protocol as well as extensions

● Per-model statistics endpoint
● Model repository management (load / unload models)
● Support sequences of related inference request (stateful inference)
● Communicate tensors via system and GPU shared memory
● Communicate tensors using binary data (HTTP/REST)

High-Performance HTTP/JSON
● HTTP/REST easy to use, but poor performance encoding tensors with JSON
● Triton binary data extension resolves

● For 128 requests, local network, provides ~ 17x speedup

POST /v2/models/resnet50/infer
{
 "inputs": [{
 "name" : "input",
 "shape" : [1, 224, 224, 3],
 "datatype" : "FP32",
 "data" : [75.0,87.0,86.0 …]
]
}

Encode and decode 150k+ FP numbers to
send a single small image

POST /v2/models/resnet50/infer
 'Inference-Header-Content-Length': 123
{
 "inputs": [{
 "name" : "input",
 "shape" : [1, 224, 224, 3],
 "datatype" : "FP32",
 "parameters":{"binary_data_size":602112}
]
}<602112 bytes of binary data>

Extension allows "raw" data to be sent after
JSON header. Eliminates encode and decode
overhead

Inference Protocol Reference
● KFServing Inference Protocol - Version 2

https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2

● Triton Inference Server implements core protocol plus many extensions

https://github.com/triton-inference-server/server/blob/master/docs/inference_p
rotocols.md

https://github.com/kubeflow/kfserving/tree/master/docs/predict-api/v2
https://github.com/triton-inference-server/server/blob/master/docs/inference_protocols.md
https://github.com/triton-inference-server/server/blob/master/docs/inference_protocols.md

KFServing Reference

● KFServing v0.5.0 with v1beta1 API and inference v2 protocol

RFC:https://docs.google.com/document/u/1/d/1ktiO7gWohq19C_rixXH0T_D9
1TjkrQELlQjlkvSefVc

● Alpha version of Multi-Model Serving.
● GitHub: https://github.com/kubeflow/kfserving
● Examples: https://github.com/kubeflow/kfserving/tree/master/docs/samples
● Open community and we love your contributions!

https://docs.google.com/document/u/1/d/1ktiO7gWohq19C_rixXH0T_D91TjkrQELlQjlkvSefVc/edit#
https://docs.google.com/document/u/1/d/1ktiO7gWohq19C_rixXH0T_D91TjkrQELlQjlkvSefVc/edit#
https://github.com/kubeflow/kfserving
https://github.com/kubeflow/kfserving/tree/master/docs/samples

