
Min Jin, Ant Group

API Priority And Fairness:
Kube-APIServer Flow-control Protection

Topic

Kubernetes Feature-Gate: “APIPriorityAndFairness” (Since 1.18)

Kubernetes Blog: API Priority And Fairness Alpha

https://kubernetes.io/blog/2020/04/06/kubernetes-1-18-feature-api-priority-and-fairness-alpha/

Design / KEP:

https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/1040-priority-and-fairness

https://kubernetes.io/blog/2020/04/06/kubernetes-1-18-feature-api-priority-and-fairness-alpha/
https://github.com/kubernetes/enhancements/tree/master/keps/sig-api-machinery/1040-priority-and-fairness

About Me

Min Jin
Software Engineer, Ant Group

Kubernetes sub-project owners (apiserver-builder,
apiserver-runtime, Java client library, etc.). SIG
API-Machinery working member for about 3 years.

yue9944882

yue9944882@gmail.com

Team

@IBM @Google @RedHat

And the contributors so far: Aaron Prindle, Jonathan Tomer, Bruce Ma, Yu Liao, Mengyi Zhou!

Summary

• Background and motivation for kicking off this feature (8min)

• System design retrospection (8min)

• Introduction to our alpha stage implementation (4min)

• DEMO: Customize flow-control settings for your cluster (2min)

• Planned enhancements for beta stage (3min)

(Total Presentation ~25min)

Pt. 1

Background and Motivation

Higher Goal

• Self-Protection

- Prioritize cluster-critical requests for self-maintenance

- Prevent spammy clients or buggy controllers stunning the whole cluster

Self-Protection

In terms of “Protection”, we’re actually protecting Kube-APIServer from
incoming requests. So we should start by understanding the different kinds
of traffic being served by a typical Kube-APIServer:

- APIServer loopbacks

- Delegated requests from aggregated apiserver or admission webhooks

- Controllers: Deployment of Doom

- Daemons: Kubelet Amuck

Kube-APIServer Loopback
Kube-APIServer will be requesting against itself even if there’re no
client requests at all, such as:

- Informer Factory: Kube-APIServer acquires the status of the
cluster by accessing the object cache provided by the informer
factory. These informers will keep raising LIST/WATCH requests
until the Kube-APIServer is down.

- Embeded Controllers in Kube-APIServer:
- Cluster CA rotater
- CRD related controllers
- APIService (APIServer Aggregation) related controllers

All these requests are called “loopback” because they’re raised and
served within Kube-APIServer instance, and they are supposed to
be “first-class citizens” in the kubernetes world because they are
highly connected with the healthy status of the whole cluster.

Kube-APIServer

Priority Inversion
You’re free to customzie your cluster by the extensibilities
provided by Kube-APIServer. These extensions will be
invoked during the time when the Kube-APIServer
executing/serving an incoming request, and they can also
spawn new requests back to the Kube-APIServer which
results in cyclic dependency in the request chain.

- APIService (Aggregated APIServer)

- {Mutating,Validating}WebhookConfiguration

Ideally the spawned/child requests should always have a
higher priority than its parent to avoid deadlocks in the
requests chain.Kube-APIServer

Admission
Webhooks

Aggregated
APIServer

Deployment of Doom
We had a situation where a bug in the Deployment controller
caused it to run amuck under certain circumstances, issuing
requests in a tight loop. We would like controller bugs to not take
the whole system down.

The same issue also applies to those third-party controllers
installed to the cluster for different purposes, a buggy controller
may have ill behavior such as:

1. Frequently issuing heavy unpaginated LIST requests to the
Kube-APIServer which should have been avoided by reading
the cache or list resources with a pager.

2. Having too many failing task items in the queue that the
controller keeps retrying inefficiently with many meaningless
requests against the Kube-APIServer.

Kube-APIServer

Deployment
Controller

Kubelet Amuck

The controller that runs amuck might not be a central
singleton, it could be a kubelet, kube-proxy, or other per-node
or otherwise multiplied controller. In such a situation we would
like only the guilty individual to suffer, not all its peers and the
rest of the system.

While this particular issue isn’t necessarily connected a bug, it
can be the cluster reaching its scalability limit. E.g. the cluster
can’t bear more kubelet instances. But the fun fact is that
usually we don’t know the limit until we actually reach it. But
we feel like to sense the limit by something like a mild warning
instead of seeing the whole cluster burning in fire.

Kube-APIServer

Kubelets

Higher Goal

• Multi-Tenancy

- Provide guaranteed capacity for controllers that are “less important”

- Tenants (in the same priority band) sharing the cluster should get an equal
share of service.

Multi-Tenancy

Kubernetes cluster is designed to be shared by multiple tenants.

- Each tenant corresponds with a kube API namespace.

- Each tenant corresponds with a user name.

- Each tenant corresponds with a prefix of the user name.

- Each tenant corresponds with a user's group. Other groups may exist. There is a subset of the groups
that serve to identify tenants. Each user belongs to exactly one of the tenant-identifying groups.

- K-sigs/multi-tenancy subproject has a brand new API definition of tenant which is basically consists of
a group of namespaces.

Non Goal

- No coordination between apiservers nor with a load balancer is attempted. Each
apiserver independently protects itself. We imagine that later developments may add
support for informing load balancers about the load state of the apiservers.

- Will not attempt auto-tuning the capacity limit(s). Instead the administrator will
configure each apiserver's capacity limit(s), analogously to how the max-in-flight limits
are configured today.

- Will not attempt to reproduce the functionality of the existing event rate limiting
admission plugin. Events are a somewhat special case. For now we intend to simply
leave the existing admission plugin in place.

Pt. 2

System Design

Retrospection

Flow-control Basics
There’re two basic approaches of flow-control methods:

• At the source / Client-side

* Kubernetes/client-go provides a Token-Bucket rate-limiter for muzzling the clients, and
there was even a dedicated admission controller for rate-limit the events (now deprecated)
but client-side rate-limiting always has a few defects:

1. Users can opt-out from rate-limiting by granting the bucket a minus or
infinite capacity.

2. Tough to control the granularity if multiple controllers/components are built in a same
go process.

• s

• At the gateway / Server-side

Existing Server-side Limiter
1. Limiting the total number of executing requests

--max-mutating-requests-inflight int Default: 200

The maximum number of mutating requests in flight at a
given time. When the server exceeds this, it rejects
requests. Zero for no limit.

--max-requests-inflight int Default: 400

The maximum number of non-mutating requests in flight at
a given time. When the server exceeds this, it rejects
requests. Zero for no limit.

--min-request-timeout int Default: 1800

An optional field indicating the minimum number of
seconds a handler must keep a request open before timing
it out. Currently only honored by the watch request handler,
which picks a randomized value above this number as the
connection timeout, to spread out load.

2. Apply a timeout for non-long-running requests

Linux Qdisc

Classless Qdisc

* RR: Round Robin schedules packets without
priority. Can’t handle bursty traffic.

* CoDel: Controlled Delay aimed at overcoming
bufferbloat. The algorithm controls delay for
each single queue independently which cannot
do a global optimized scheduling decision.

* TBF: Token Bucket Filter is good at shaping
uneven traffic. Needs the users carefully tuning
proper parameters {AverageRate, BurstCapacity}
for the bucket.

Classful Qdisc

* DRR: Deficit Robin Robin is good at both traffic
shaping and providing fairness. If we can
properly abstract the cost into the “Quantum” in
the algorithm.

* HTB: Hierarchical Token Bucket basically
organizes multiple TBF into a tree structure and
allows capacity borrowing between the leaves.

Classful Flow-Control System

Rule-based
Classifier

Queue
Assigner

𝑓 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 = 𝑐𝑙𝑎𝑠𝑠 𝑓 𝑐𝑙𝑎𝑠𝑠 = 𝑞𝑢𝑒𝑢𝑒

Queue
Scheduler

𝑓 𝑞𝑢𝑒𝑢𝑒 = 𝑑𝑒lay

Arriving
Request

Executing

Classifier

We extend the abstraction of Class from Linux TC system to Priority Level in the Kube-
APIServer. In the new flow-control system, a Priority Level is:

- A priority band that requests in higher priorities should be executed in prior to lower priorities.

- A request class in which all its matching requests are handled equally.

- A request class where we applies the same rejection strategy (either reject immediately or waiting in-queue)

Classifier

To classify the requests into proper Priority Level, the input we can get from Kube-
APIServer’s requests context is:

- Client Identity: These identity information is encrypted in the client-side X509 certificate hence reliable.

- User (Name)

- User Groups

- Requesting Target

- Requesting Namespace (Empty “” for cluster-scoped)

- Other request Metadata, such as verbs, target resource types, etc.

Queue Assigner
Each Priority Level contains a group of request-queues for scheduling. How to map a request to one of
queues?

One Queue Per User/Tenant
#(users) == #(queues)

Q1 Q2 Q3 Q4

U1 U2 U3 U4

Priority Level

Shuffle Sharding
#(hand-size) == 2 && #(queues) == 4

requests from each user will be ramdomly queued
into one of the 2 queue candidate

Q1 Q2 Q3 Q4

U1 U2 U3 U4

Priority Level

Shuffle Sharding
- Save users from adjusting/tuning number of queues each time when a new user get abroad the

kubernetes cluster

- Bound the memory cost from the managed queues and the pending items in-queue.

- Distribute the disturbances from the noisy users to a limit number of other queues.

Q1 Q2 Q3 Q4

U1 U2 U3 U4

Priority Level

Q1 Q2 Q3 Q4

U1 U2 U3 U4

Priority Level

When U1 runs amuck,
U2 and U4 partially

affected

Queue Scheduler

Q1 Q2 Q3 Q4

Priority Level

Fair Queuing
Scheduler

Pops requests from
the queues

Executing requests

We uses Fair Queuing algorithm which is
aiming at the following goals upon
scheduling requests from the queues:

- Even distribution

- Max-Min Fairness

FQ: Fair Queuing

FQ: Fair Queuing

FQ for Server Requests

Limitations for adapting FQ into Kube-APIServer:

1. Dispatching requests to be served rather than packets to be transmitted.

2. Multiple requests may be served at once.

3. The actual service time (i.e., duration) is not known until a request is done being
served.

FQ for Server Requests

> 1. Dispatching requests to be served rather than packets to be transmitted.
> 2. Multiple requests may be served at once.

Adapting the original concept of virtual time R(t) with C --- the concurrentcy limit of
the Kube-APIServer.

> 3. The actual service time (i.e., duration) is not known until a request is done being served.

Modifying the algorithm to dispatch based on an initial guess at the request’s service
time (duration) and then make the corresponding adjustments once the request’s
actual service time is known.

𝑅 𝑡 =
1

𝑁𝐸𝑄(𝑡) 𝑅 𝑡 =
𝐶

𝑁𝐸𝑄(𝑡)

APF System

Priority-Level
Classifier

Shuffle Sharding Fair Queuing

Arriving Request consists of user
identiy, and request metadata.

Executing

classifies the request to
one Priority Level.

enqueues the request to
one the queues belongs to

the matching Priority
Level.

pops requests from the
non-empty queues w/

virtual time evenly
distributed.

Pt. 3

Kubernetes (1.18+)

Alpha Implementation

Documentation

User-Facing Documentation:
https://kubernetes.io/docs/concepts/cluster-administration/flow-control/

Enabling the feature at Kube-APIServer by doing the following configurations:

- Enabling feature gate APIPriorityAndFairness=true

- Adding --runtime-config=flowcontrol.apiserver.k8s.io/v1alpha1=true to the Kube-APIServer’s
starting flags.

https://kubernetes.io/docs/concepts/cluster-administration/flow-control/

FlowSchema (Exempt)
apiVersion: flowcontrol.apiserver.k8s.io/v1alpha1
kind: FlowSchema
metadata:

name: exempt
spec:

matchingPrecedence: 1
priorityLevelConfiguration:

name: exempt
rules:
- nonResourceRules:

- nonResourceURLs:
- '*'
verbs:
- '*'

resourceRules:
- apiGroups:

- '*'
clusterScope: true
namespaces:
- '*'

resources:
- '*'
verbs:
- '*'

subjects:
- group:

name: system:masters
kind: Group

status:
conditions:
- lastTransitionTime: "2020-10-19T13:20:19Z"

message: This FlowSchema references the
PriorityLevelConfiguration object named

"exempt" and it exists
reason: Found
status: "False"
type: Dangling

FlowSchema (Catch-All)
apiVersion: flowcontrol.apiserver.k8s.io/v1alpha1
kind: FlowSchema
metadata:

name: catch-all
spec:

distinguisherMethod:
type: ByUser

matchingPrecedence: 10000
priorityLevelConfiguration:

name: catch-all
rules:
- nonResourceRules:

- nonResourceURLs:
- '*'
verbs:
- '*'

resourceRules:
- apiGroups:

- '*'
clusterScope: true

namespaces:
- '*'
resources:
- '*'
verbs:
- '*'

subjects:
- group:

name: system:unauthenticated
kind: Group

- group:
name: system:authenticated

kind: Group
status:

conditions:
- lastTransitionTime: "2020-10-19T13:20:19Z"

message: This FlowSchema references the
PriorityLevelConfiguration object named

"catch-all" and it exists
reason: Found
status: "False"

PriorityLevelConfiguration

apiVersion: flowcontrol.apiserver.k8s.io/v1alpha1
kind: PriorityLevelConfiguration
metadata:

name: leader-election
spec:

limited:
assuredConcurrencyShares: 10
limitResponse:

queuing:
handSize: 4
queueLengthLimit: 50
queues: 16

type: Queue
type: Limited

status: {}

apiVersion: flowcontrol.apiserver.k8s.io/v1alpha1
kind: PriorityLevelConfiguration
metadata:

name: catch-all
spec:

limited:
assuredConcurrencyShares: 1
limitResponse:

type: Reject
type: Limited

status: {}

Pt. 4

DEMO:

Customize Configuration
for a KinD cluster

Pt. 5

Planned Enhancements
for Beta Stage

Blocking Items

- Improving observability and robustness: Adding debug endpoint dumping fine-
grained states of the queues for priority-levels.

- Providing approaches to opt-out client-side rate-limiting: Configurable client-side
rate-limitting(QPS/Burst) via either kubeconfig or command-line flags

- Necessary e2e tests

Non-Blocking Items

- Supports concurrency limiting upon long-running requests.

- Allow constant concurrency/relative shares in the priority-level API model.

- Automatically manages versions of mandatory/suggested configuration.

- Discriminates paginated LIST requests.

Q&A

