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Kubernetes Controllers

Controllers are control loops that watch the cluster's state

If necessary, the controller changes a resource's current 
state to match the desired state:
• An application replica fails, a new replica is created
• A resource is scaled up or down, Pods will be created or 

terminated to match the desired state

Kubernetes has several built-in controllers that satisfy 
common use cases:
• Deployments
• DaemonSets
• Jobs
• StatefulSets

Desired state

=
Actual state



Deployments
Describes the desired state for an application

Wrapper for ReplicaSet (RS) controller, Pod, and 
application container

Creating/deleting a Deployment creates/deletes RS 
and Pods in a cascade

Rolling update feature changes the actual state to 
the desired state with zero downtime!

Supports a wide array of application types but 
feature set works best with stateless apps
• Pod hostnames not predictable/stable
• Can only use PVs/PVCs with ReadWriteMany

access mode
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ReplicaSets

Reconcile desired vs actual replication 
factor

Guarantee availability of application replicas

Use selectors to query for, and add/remove 
target pods

Can be used independently of Deployments

When used with Deployment controller, part 
of rolling update feature
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ReplicaSet

Desired replicas = 7

Label query =
tier: frontend

app: storefront

kubectl get pod -l
tier=frontend,
app=storefront

How 
many 
pods?

7

profit!
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kubectl run ...

8
kubectl delete ...



Deployments & RSes

One-to-many relationships:
• Between Deployments and RSes
• Between RSes and Pods

RS is a "snapshot" of an application revision:
• Image change
• Configuration change
• etc.

Revision history – number of ReplicaSets to retain
• Enables/limits to n number of rollbacks
• Lightweight tracking of revisions to an app
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Deploymets: Rolling Updates

Changes to Pods are rolled out at a controlled 
rate

New Pods are rolled out:
• Before old Pods are terminated
• On Nodes with available resources

Default setting ensures that at least 75% of the 
Pod replicas are available throughout an update

Client traffic is load balanced across all available 
Pods, despite application version

In-progress rollouts can be watched for updates
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Demo: Rolling Update

Rolling update demo:

Default behavior

Undo, status, and history



Deployment Rolling Update

Pausing – a Deployment's rollout trigger can be 
paused at any time
• Issue several commands that make changes 

without trigging an update for each change
• During the rolling update to confirm settings 

before completing

Resuming – rolling updates can start or proceed
• All changes made prior to resuming will be 

rolled out during a single rolling update
• Finishes a rollout that was stopped in progress

Any subsequent change(s) to a Deployment that is 
not paused will trigger immediate rollouts

master

worker

worker

worker

worker

Rolling
update

v2.1
R1

v2.1
R2

v2.1
R3

master

worker

worker

worker

worker

v2.1
R1

v2.1
R2

v2.1
R3

v2.2
R1



Demo: Rolling Update

Rolling update demo:

Pause & resume



Controlling Rolling Updates
Max surge – number of pods in addition to the 
desired number that can be scheduled during a 
rolling update
• Controls how many new replicas roll out at a 

time
• Breaks updates into iterations/waves
• High surge % means more resources (cpu, 

memory) needed during rollout

Max unavailable – ensures a minimum number of 
pods are always available
• Guarantees that client traffic can be delivered to 

pods throughout the rolling update
• Cannot be 0
• Set at 100% will mean downtime!
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Demo: Rolling Update

Controlling Rolling update demo(s):

Max surge

Max unavailable



StatefulSets

Support stateful applications that require:
• Stable network identities – Pods have unique ordinals
• Persistent storage – embedded PVC template creates a 

PV for each pod

Create Pods and PVCs in a cascade
• Deleting a StatefulSet deletes Pods but not PVCs–safety 

first!

Pod identities tied to volumes
• Failed Pods replaced by Pods with identical identifiers 

match existing volumes and bind to them
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StatefulSets
Pod ordinals provide guarantees about ordering:
• Sequential Pod deployments and scaling
• No guarantee during termination when a StatefulSet is deleted

(workaround: scale to 0 first!)
Pod-0

Container

Container

√ Ready!

Pod-1
Container

Container

√ Ready!

Pod-2
Container

Container

√ Ready!

Pod-n
Container

Container

DeleteDeleteDeleteDelete

Deployment

Termination



StatefulSet Rolling Updates

Pods are deleted and recreated/replaced on the 
same node
• Eliminates the need to detach/attach network 

volumes from/to Nodes

StatefulSet rolling updates only support undo and 
status commands
• History not really functional
• Pause/resume not supported

Forced rollbacks sometimes necessary
• If a Pod never reaches Ready state, reverting 

the change will not rectify the Pod, it must be 
manually deleted to force the rollback
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StatefulSet Rolling Updates
Sequential/ordered Pod rollouts
• Pods are replaced/rolled out in reverse order
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Demo: STS Rolling Update

Rolling update with network attached storage

Undo, status, history



StatefulSet Partitioned Updates
Pods >= partition number rollout the update
Pods < partition number remain at the previous version–even if deleted!
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Demo: STS Rolling Updates

Partitioned update with local storage volumes



Summary

Kubernetes controllers provide features that provide zero-downtime rolling 
updates

Behaviors and features differ by controller:

• Deployments overlap new Pod replicas with old Pod replicas

• StatefulSets delete and replace Pods in place and require more from the 
application



Thank you!




