
Where Is My Container?
Visualizing the GitOps Container Journey

Samiya Akhtar Andre Briggs
Samiya.Akhtar@microsoft.com Andre.Briggs@microsoft.com

KubeCon Europe | August 2020 



Introduction



GitOps



Why GitOps



GitOps Observability
“...in GitOps, we MUST use continuous 

observation and verification, to enable app & 
cluster management.”

– Alexis Richardson (CEO of Weaveworks)



GitOps Observability



GitOps Challenges
Co

m
pl

ex
ity

# of Microservices



© Copyright Microsoft Corporation. All rights reserved. 

How it might work



Scales from single team to organizations

Fabrikam Trivia team wants to improve the 
Trivia App to get users to play Trivia for a longer 
duration of time by integrating work from other 
sub teams

Developer: Dani
Product Owner: Paul
Operations: Oliver



Scales from single team to organizations

The Fabrikam Trivia team has a 
monolith application they wrote and 
would like to modernize their setup 
to include the deployment of 
microservices with Kubernetes.

FRONT END BACK END

Microservices
Small, independent services

API TEAM 1

API TEAM 2

API TEAM 3

API TEAM 4

More 
Microservices



Scales from single team to organizations
Fabrikam Trivia engineers learn about GitOps and would like to store helm charts for their 
environments in git repositories for the respective microservices, which they will generate 
in CI/CD pipelines and install a GitOps operator on the clusters to sync to this repository. 

Environments: 
dev, staging, prod

Developers makes code change
Microservice 
repositories CI pipelines Container Registries

Flux syncs 
manifests

CD pipelines

Pull helm charts

Approvers

K8s Manifest 
repository

Flux pulls 
image(s)

Scales from single team to organizations

Flux syncs 
manifests

Pull helm charts
Flux pulls 
image(s)



Scales from single team to organizations

Dani and Oliver on the Fabrikam Trivia Team run into problems:
• Too many microservices, pipelines – difficult to track
• Difficulty versioning
• Tight coupling between microservices
• Lacking observability into the entire process



Repo: microserviceA
Branch: featureA, featureB

Repo: microserviceB
Branch: featureA, featureB, featureC

Support many deployment strategies

Fabrikam Trivia engineers want to test features in 
a single cluster to cut cost. They learn about the 
concept of deployment rings:

• Deploy multiple environments in a single 
cluster, using a service mesh

• Test in production
Repo: microserviceC

Branch: featureA



Support many deployment strategies

Developer makes
code change

Code repo CI build Image built Human approval

Users

Early Adopters

Feature 
canaries

Rings

Feature 
canaries

Early Adopters

CD Pipeline: 
kubectl apply

Canary Prod clusterHuman approvalEarly adoption

Users



Enables predictability in deployments

Oliver is on call and he receives a call at 3 AM
• The production environment has a bug and 

Oliver needs help from the developer(s) to 
investigate

• Oliver wants to glance at a page quickly to find 
his developer contact

• Oliver wants to know approximately how long a 
deployment will take to go through



© Copyright Microsoft Corporation. All rights reserved. 

The Ideal Solution



Journey to Great GitOps Observability

CI/CD orchestrators

Container Registries

Storage DB

Zero

Ideal

Portable
Should work in any ecosystem.
Simply run the docker image 
anywhere

Lightweight
Fast, efficient and 
pluggable anywhere

Scalable
Scales as developer teams 
grow and complexity increases

Security
No cluster access. Allow 
custom security configuration 

Predictability
Observability helps predict 
deployment success/failure

Support deployment 
strategies
Deployment rings, environments etc. 
via observability



© Copyright Microsoft Corporation. All rights reserved. 

How we could solve it



Spektate

• GitOps visualization tool – a single 
page application to introspect all 
microservices
• Application code changes 
• Author information
• Deployment rings
• PR to deploy to cluster and 

merging author
• High level definition changes
• Cluster sync statuses https://github.com/microsoft/spektate

https://github.com/microsoft/spektate


Demo

Dani loads up the dashboard and glances at the recent activity that 
made its way to the cluster. 



Demo

Yvonne, one of the developers, just merged a crucial API into the code 
repository. 



Demo

The docker image was created and CI pipeline passed successfully



Demo

Metadata was updated for this docker image in the config for the DEV 
ring



Demo

Metadata was updated for this docker image in the config for the DEV 
ring by opening a pull request into the DEV branch



Demo

The Metadata update PR was approved to merge Yvonne’s changes 
into the DEV ring



Demo

The merge triggered generation of K8s manifests to be updated with 
the new docker image



Demo

K8s manifests are pushed into the repo being watched by a syncing agent 
such as Flux



Demo

Flux synced the latest changes to the EAST-US cluster



Demo
1. The backend pods are updated in the cluster.
2. Dani, can now head over to the DEV cluster and verify that the new 

API works. 



Bedrock CLI

• Tooling to automate GitOps pipelines
• Sets up hooks for GitOps observability
• Easier configuration of Terraform 

multi-cluster K8s environments
• Built on engineering fundamentals

https://github.com/microsoft/bedrock-cli

https://github.com/microsoft/bedrock

https://github.com/microsoft/bedrock-cli
https://github.com/microsoft/bedrock-cli


Bedrock Scenario

1. Dani downloads bedrock-cli and runs 
the commands to start using 
Spektate.

2. Dani is able to launch Spektate by 
running a single command



Bedrock GitOps Flow

Trivia App 
repository

CI Trigger

App code build
unit tests/code coverage

Push to ACR

Continuous Integration

Azure Container Registry

Publish Post-publish

Continuous Delivery

Update metadata such as 
Docker image tags, 
replica count, and 

Other configuration

Configure and open 
PR for approval

High Level Repository
(optional)

Trigger CI

Transform & Publish

Use tools like Helm, 
Kustomize, 

or Fabrikate to 
generate k8s YAML

Publishes

Manifest YAML 
repository

Flux per cluster

clusters

Flux per cluster

clusters

Multiple 
Environments

Pull manifests via FluxDeveloper

Code change

Pull image(s) via Flux

Merge PR

Approver



Bedrock – DevOps For Kubernetes
Task Without Bedrock With Bedrock

Quickly setup a GitOps
pipeline

Upskill on GitOps, Helm, and Kubernetes
Provision an Azure DevOps instance and Azure 
subscription
Follow manual instructions on Bedrock repo 
Manually check pipeline status through trial and error

Provision an Azure DevOps instance and Azure 
subscription
bedrock setup
Check Azure DevOps or local git repos

Manage many Kubernetes 
microservices Yaml definitions

Hand edit yaml across many file or
Manage several Helm value.yaml files and run Helm 
template several times.
Especially true we wanting to pin to specific version of 
application (git commit/tag or Helm version)
Prone to more errors 

fab install
fab generate

Observe microservice 
deployments from a pane of 
glass

Manually add telemetry to pipelines or wrote code to 
access Azure DevOps API
Create a custom Azure DevOps dashboard 
Lacks easy visibility into the status of deployments to 
Kubernetes cluster(s)

bedrock init
Use Bedrock generated pipelines to build your 
microservices
Make sure is running Docker locally
bedrock deployment dashboard



Summary

• What is GitOps Observability?
• How to make GitOps more observable?
• Some ways that we addressed it



© Copyright Microsoft Corporation. All rights reserved. 

Thank you!
Q & A



Appendix

GitOps Tooling:
• Bedrock - https://github.com/microsoft/bedrock
• Bedrock CLI - https://github.com/microsoft/bedrock-cli
• Fabrikate - https://github.com/microsoft/fabrikate
• Spektate - https://github.com/microsoft/spektate

https://github.com/microsoft/bedrock
https://github.com/microsoft/bedrock-cli
https://github.com/Microsoft/fabrikate
https://github.com/microsoft/spektate

