

lirtual

Virtual Cluster - A Practical Kubernetes Hard Multi-tenancy Solution

Fei Guo, Alibaba

Multitenancy: A battle in Kubernetes

Multiple users use the shared cluster resource in an **isolated** manner is a hard problem.

Complete Control Plane Isolation + Zero Tenant Integration Effort II Virtual Cluster

The speaker

Fei Guo, Senior Staff Engineer, Alibaba Cloud

- Cloud native application platform team
- Serverless & Workload & Edge

- Challenges & Solutions
- Experiments
- Related work & Project Status
- Demo

Disclaimer

- This talk solely addresses the K8s controller plane isolation problems.
- Data plane isolation techniques will not be discussed. State of the art solutions may be referred if available.

DESIGN

Threats

- Users are untrustworthy.
 - Exposing cluster scope resources is dangerous.
 - Generating harmful usage pattern intentionally or unintentionally.
 - They may serve other users.
- Containers are not safe.

Typical cloud scenarios that may apply internally as well

Namespace is insufficient

- Performance Interference
 - Starvation
 - Priority inversion
- Information leakage
- Installation disallowed
 - No CRD
 - No Webhooks
 - No Clusterroles

Justifications

- No noisy neighbors
- Complete view isolation
- Limited blast radius for security vulnerability
- Full manageability

CHALLENGES & SOLUTIONS

A "virtual" cluster view

User finds Pod running in a virtual tenant K8s

sh-4.4# env
$HIREPRETES DOPT AA3 TCP DPOTO_+cn$
$KUBERNETES POPT AA3 TCP ADDP_10 96 0 1$
$KUREPNETES PORT_ten: //10 96 0 1:443$
PWD_/
HOME / root
KUREPNETES SERVICE DORT HTTPS-443
KURERNETES DORT 443 TOP DORT-443
KUBERNETES_FORT_ 443 TCP_+cn: //10 96 0 1:443
PATH_/usr/local/shin:/usr/local/hin:/usr/shin:/usr/hin:/shin:/hin
KIRERNETES SERVICE HOST=10 96 0 1
-/usr/hin/env
sh-4 4# cat /etc/resolv confl
nameserver 10 96 0.10
search default syc cluster local syc cluster local cluster local
ontions ndots:5
sh-4 4# 1s /run/secrets/kubernetes io/serviceaccount/
ca.crt namespace token
sh-4 4# cat /run/secrets/kubernetes io/serviceaccount/namesnace
default

The magician - syncer

- Manipulate the Pod template (like a mutation webhook), no change in Kubelet is required
 - env variables
 - Service account secrets
 - Host alias & DNS config
- Ensure the data consistency
 - Tenant master is the source of truth for SPEC.
 - Super master is the source of truth for STATUS.
- User is not aware of the super master
 - Zero integration effort, it just works.

Syncer cannot be a hammer

Synchronization based on the object states in the informer caches

EXPERIMENTS

Stress tests

- 100 tenant masters, up to 10K Pods concurrent creations in total
- One syncer
- 100 virtual kubelets installed in the super master

The histogram of Pods creation time

The wall-clock time of creating all Pods

Syncer cost

- Syncer resource consumption does not scale.
- One syncer can support hundreds of tenant masters.
 - Syncer is stateless, state recovery can be done in < 1 minute upon restart.
 - It can be horizontally scaled.
- In normal cases, the extra latency added by the syncer is less than a few milliseconds.

RELATED WORK & PROJECT STATUS

Other solutions

- K3v (<u>https://github.com/ibuildthecloud/k3v</u>)
 - Dedicated control plane modified K3s
 - Per tenant syncer
- Arktos (<u>https://github.com/futurewei-cloud/arktos</u>)
 - Modify APIServer to support new tenant APIs
 - Shared control plane
- Virtual Kubelet
 - Simplified provider interfaces, struggle for compatibility

Project status

- Multitenancy WG project (<u>https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/virtualcluster</u>)
- Kubernetes conformance tests pass rate : 99%
- Complete UT and e2e tests (>70% code coverage)
- Support cloud and on-prem K8s
- Already used in cloud serverless product
- Adopted by the community

DEMO

QUESTIONS ?