

Multitenancy: A battle in Kubernetes

Multiple users use the shared cluster resource in an

isolated manner is a hard problem.

Data Plane Control Plane

Networking Storage

Runtime Controller
Manager API Server

etcd
Scheduler

Is it possible?

Node Node Node

P P P

P P P

Complete Control

Plane Isolation

Zero Tenant

Integration Effort=

Virtual Cluster

The speaker

Fei Guo, Senior Staff Engineer, Alibaba Cloud

§ Cloud native application platform team

§ Serverless & Workload & Edge

§ Design

§ Challenges & Solutions

§ Experiments

§ Related work & Project Status

§ Demo

Disclaimer

§ This talk solely addresses the K8s controller plane isolation

problems.

§ Data plane isolation techniques will not be discussed. State of the

art solutions may be referred if available.

Typical cloud scenarios that may apply internally as well

DESIGN

Threats

§ Users are untrustworthy.

§ Exposing cluster scope resources is dangerous.

§ Generating harmful usage pattern intentionally or unintentionally.

§ They may serve other users.

§ Containers are not safe.

Typical cloud scenarios that may apply internally as well

Namespace is insufficient

Node Node Node

P P

PP P

P

Namespace A Namespace B

APIServerP P P P P

§ Performance Interference

§ Starvation

§ Priority inversion

§ Information leakage

§ Installation disallowed

§ No CRD

§ No Webhooks

§ No Clusterroles

…

.. ..

Principles

The solution space

Compatibility Complexity

CostScalability

Architecture

Tenant Master

Kubelet CRI/Containerd

Tenant Master

Node
Super
Master

Tenant
Operator vNode vNode

vn-agent

runv
Sandbox
container

Sandbox
container

Sandbox
container

Syncer Controller

Resource
Provider

Object States
Maintainers

Justifications

§ Cloud vendors have
K8s master service

offering (EKS, ACK)

§ One syncer can

support hundreds

of tenant masters,
horizontal scale is

possible

§ Only Pod creation related

API objects are synced

Compatibility Complexity

CostScalability

§ Syncer changes neither

the object APIs nor the

semantics

§ Dance with the

upstream

§ Everything is K8s

extension

§ Thin server,

think client

§ No noisy neighbors

§ Complete view isolation

§ Limited blast radius for

security vulnerability

§ Full manageability

CHALLENGES & SOLUTIONS

A “virtual” cluster view

Tenant Master

Kubelet

Node P

Syncer

P

P
Super Master

kind: Pod
metadata:
namespace: default
name: nginx

kind: Pod
metadata:
namespace: ta-default
name: nginx

User finds Pod running in a virtual tenant K8s

The magician - syncer

§ Manipulate the Pod template (like a mutation webhook), no change in Kubelet is required
§ env variables

§ Service account secrets

§ Host alias & DNS config

§ Ensure the data consistency
§ Tenant master is the source of truth for SPEC.

§ Super master is the source of truth for STATUS.

§ User is not aware of the super master

§ Zero integration effort, it just works.

Syncer cannot be a hammer

Super Master

Tenant Master

Cache Cache

Cache …

…

Pod Service Node
…

Tenant Master

Syncer

Cache Client-go/Store

Client-go/Informer

Reconciler

List & Watch
Reflector

Pod Svc Node

…
Pod Svc Node Pod Svc Node

Synchronization based

on the object states in

the informer caches

EXPERIMENTS

Stress tests

0

400

800

1200

1600

2000

15 30 45 60 75 90 105 120 >135

Time Bucket (seconds)

Baseline
VC

10K Pods

The histogram of Pods creation time

§ 100 tenant masters, up to 10K Pods concurrent creations in total

§ One syncer

§ 100 virtual kubelets installed in the super master

1

4

16

64

256

1K 2K 4K 10K

Lo
g2

 s
ca

le

tim
e

in
 s

ec
on

ds

Number of Pods

Baseline

VC

The wall-clock time of creating all Pods

17% slowdown

Syncer cost

§ Syncer resource consumption does not scale.

§ One syncer can support hundreds of tenant masters.
§ Syncer is stateless, state recovery can be done in < 1 minute upon restart.

§ It can be horizontally scaled.

§ In normal cases, the extra latency added by the syncer is less than a few

milliseconds.

RELATED WORK & PROJECT STATUS

Other solutions

§ K3v (https://github.com/ibuildthecloud/k3v)

§ Dedicated control plane – modified K3s

§ Per tenant syncer

§ Arktos (https://github.com/futurewei-cloud/arktos)

§ Modify APIServer to support new tenant APIs

§ Shared control plane

§ Virtual Kubelet

§ Simplified provider interfaces, struggle for compatibility

https://github.com/ibuildthecloud/k3v
https://github.com/futurewei-cloud/arktos

Project status

QUESTIONS ?

§ Multitenancy WG project (https://github.com/kubernetes-sigs/multi-

tenancy/tree/master/incubator/virtualcluster)

§ Kubernetes conformance tests pass rate : 99%

§ Complete UT and e2e tests (>70% code coverage)

§ Support cloud and on-prem K8s

§ Already used in cloud serverless product

§ Adopted by the community

https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/virtualcluster

DEMO

QUESTIONS ?

