


What I plan to cover

• BRIEF intro to general networking (Ethernet + IP encapsula;on), 
network namespaces, and container networking 

• Kubernetes Services

• Flannel (with VXLAN encapsula;on)

• Calico (with IP-over-IP encapsula;on)

2/37



Who this is for

• Anyone who sets up clusters and needs to know how they work 

• Developers who want to understand the limita8ons and advantages 
of how networking works in Kubernetes

• Opera8ons and Network Engineers who need to debug either things 
running in the cluster that use networking (just about everything) or 
cluster networking in general 

Note: I expect a working knowledge of basic networking and linux 
tools 

3/37



Environment setup
If you want to follow along, you will need to clone this repo:
git clone https://github.com/korvus81/k8s-net-labs.git

You also either need to install:
- Docker h4ps://docs.docker.com/get-docker/
- Footloose h4ps://github.com/weaveworks/footloose#install

Or have a working Vagrant + VirtualBox setup.

You can probably do most of the demonstra4ons on other Kubernetes clusters, but this will let 
you have the environment I use. I use k3s in Docker for the demos (stood up with Footloose) 
because it was the lightest weight Kubernetes solu4on I could come up with that looks like a real 
cluster from a networking perspec4ve. 

4/37

https://docs.docker.com/get-docker/
https://github.com/weaveworks/footloose%23install
https://k3s.io/


Demo: Environment Setup

5/37



Encapsula)on in Networking

6/37



Encapsula)on in Networking

To get us all on the same page, let's talk about how encapsula5on 
works in networking.

I'm going to assume we are talking about IPv4 over Ethernet

7/37



Encapsula)on in Networking
To send a packet via, say, UDP, we get the data:

8/37



Encapsula)on in Networking
We s%ck a (layer 4) UDP header on it:

9/37



Encapsula)on in Networking
We then s(ck a (layer 3) IP header on it:

10/37



Encapsula)on in Networking
Then we s(ck a (layer 2) Ethernet header on top of that:

The next hop on the local network (addressed by the Ethernet header) will either:
- consume the IP packet
- replace the Ethernet header with one addressed to the next hop

11/37



Docker / Container Networking

12/37



Docker / Container Networking

Docker allows you to run a process with various forms of isola6on 
from the host opera6ng system.

For our purposes, we only really care about network isola4on.

Docker containers are run in a network namespace -- this means 
they have no access to the host network adapters by default.

13/37



Docker bridge mode

• The standard Docker networking mode 
is "bridge mode"

14/37



Docker bridge mode

• Docker creates a bridge device 
(docker0 unless you specify otherwise) 
and allocates a block of IPs 
(172.17.0.0/16 by default)

• This bridge device operates like an 
Ethernet switch, running in soGware

15/37



Docker bridge mode

• The bridge gets a.ached to the host 
network interface

16/37



Docker bridge mode

• Docker creates a new network 
namespace for each container

17/37



Docker bridge mode

• Docker creates a VETH pair (virtual 
ethernet device). This is like two 
network devices with a pipe between 
them. It a?aches one of the devices to 
the docker0 bridge and the other it 
moves into the container's network 
namespace and names it eth0 within 
that namespace.

18/37



Docker bridge mode

• The eth0 interface inside the container 
is assigned an IP from the internal IP 
range Docker has assigned to that 
bridge (172.17.0.2-.254).

• This allows containers to talk to each 
other via their private IP range.

19/37



Docker bridge mode

• Tradi'onally, Docker wouldn't expose those container IPs to 
anything off of the host the containers are on

• Ge@ng traffic to and from containers from other machines is one 
of the problems Kubernetes needs to solve

20/37



Demo: Container Networking

21/37



IPs in Kubernetes

22/37



IPs in Kubernetes

We are going to talk about three main groups of IP addresses
- Node addresses 
- Pod addresses 
- Service addresses 

23/37



Node addresses

• Each node needs an IP address

• This is used for nodes to talk to each other and exists before 
Kubernetes is set up

• This is outside of the scope of Kubernetes and is assigned by 
some outside process (DHCP, manual configuraCon, magically by 
a cloud provider, etc)

24/37



Pod addresses
• To review, in Kubernetes a pod consists of one or more containers sharing the same network 

namespace

• In the Kubernetes network model, every pod receives it's own IP address

• These are allocated through the IPAM funcAonality of the CNI (Container Network Interface) plugins 

you are using

• The most basic involves assigning a subnet (IP address range) to each node to give out to the pods 

on that node

• Networking plugins oFen do something fancier, such as dynamically allocaAng IP ranges

• The kube-apiserver process will be started with a flag that looks like --cluster-
cidr=172.16.0.0/16 -- this will determine the range all pod IPs should be in, since that is the 

range of IP addresses "within the cluster"

25/37



Service addresses
• A Kubernetes service is an abstrac/on over a set of pods

• All non-headless services have a ClusterIP assigned to them

• ClusterIPs are handed out from a pool based on a flag to kube-
apiserver that looks like --service-cluster-ip-
range=172.15.100.0/23

• The apiserver process handles this, regardless of your networking plugin, and 
tells the kubelet processes about what IPs are assigned to what services, 
as well as the endpoints which are IPs of pods behind that service

26/37



Demo: Service IPs

27/37



Flannel

28/37



Flannel

Flannel is one of the earlier network plugins, and a decent choice 
for small clusters. It's also the default for k3s, which makes it a 
good place to start.

Flannel runs at layer 2 (Ethernet) in the networking stack, so all 
pods can talk via Ethernet (as opposed to only IP).

29/37



Flannel -- IPAM

Flannel uses a pod subnet sta.cally assigned to each Kubernetes 
node, so pod IP alloca.on decisions are all local to the node

Flannel -- Encapsula-on

The default encapsula/on for Flannel is VXLAN, which involves 
wrapping a Layer 2 Ethernet packet inside a UDP packet

30/37



Demo: Flannel

31/37



Calico

32/37



Calico

Calico is easily the most common networking plugin, with Tigera 
(the company behind it) claiming that it is in use to some degree (at 
least for network policies) in most cloud provider Kubernetes 
environments.

Calico runs at layer 3 (IP) in the networking stack, so only IP traffic 
can be encapsulated, and everything is routed.

33/37



Calico -- IPAM

Calico uses a dynamic subnet alloca1on scheme, with either the 
Kubernetes API server or it's own etcd cluster. 

Calico -- Encapsula.on

The default encapsula/on for Calico is IP-in-IP, which involves 
wrapping a Layer 3 IP packet inside an extra IP header. This is very 
low overhead, but can only encapsulate IP packets.

34/37



Demo: Calico

35/37



Wrap up
• This has been a quick tour through container networking, service rou6ng, 

Flannel, and Calico

• Kubernetes networking is a HUGE topic, so any talk has to only cover a 
small slice

• ...but hopefully this gets you started

• While this talk has been pre-recorded, I should be available to answer 
ques6ons 

• Or you can reach me aEer the talk at jeff@jeffpoole.net 

36/37



Thanks!

37/37


