
TiKV: A Cloud-Native Key-Value Database
Presented by Dongxu Huang and Nick Cameron

KubeCon + CloudNativeCon EU August 2020

About us

● Dongxu (Ed) Huang

● Co-founder & CTO, PingCAP, TiDB/TiKV

● Database geek, distributed system engineer

● Rust / Golang bilingual

● Twitter: @dxhuang

● Email: huang@pingcap.com

About us

● Nick Cameron

● Senior engineer at PingCAP

● TiKV contributor

● Rust core team

● Twitter: @nick_r_cameron

● GitHub: @nrc

Introduction and History

A little bit of history

PingCAP, TiDB and TiKV

In the spring of 2015, after reading papers on Google Spanner and F1, 3 engineers decided

to launch their own startup to build an open source implementation of Spanner (of MySQL

protocol)

A little bit of history: SQL First!

This is a very ambitious project for a young startup, and we chose to start with the SQL layer (which is

the F1 part).

Why?

● the SQL layer is closer to application and better expresses our ideas in the

early days of the project

● More importantly, for quality purposes, we used a lot of test cases from

MySQL and its surrounding ecosystem.

But when we finished the first version of the TiDB SQL layer, problem arose

A little bit of history

Who is going to use a database that can't store data?

A little bit of history

This is Google F1

MySQL Client

TiDB SQL TiDB SQL TiDB SQL

????

This is us (in Sep, 2015)

A little bit of history

MySQL Client

TiDB SQL TiDB SQL TiDB SQL

This is us (in early 2016)

HBase

HDFS

HBase Coprocessor

Looks like a distributed SQL database, right?

A little bit of history

We chose HBase
as our first
storage engine

MySQL Client

TiDB SQL TiDB SQL TiDB SQL

HBase

HDFS

HBase Coprocessor

RPC

RPC!

RPC!!

RPC!!!

Poor performance & too many dependencies

A little bit of history

● By the end of 2016, We decide to build our own distributed KV layer

● Requirements:

○ Scale-out like other NoSQL systems

○ Performance matters

○ Built-in ACID transaction support

○ Modern data replication protocol

○ Fewer layers of abstraction

● Target:

○ Building block (storage) for other distributed systems

A little bit of history

● By the end of 2016, We decide to build our own distributed KV layer

● Requirements:

○ Scale-out like other NoSQL systems (Auto sharding/scaling)

○ Performance matters (Rust + RocksDB)

○ Built-in ACID transaction support (2PC, but also supports atomic KV API)

○ Modern data replication protocol (Raft & Multi-Raft)

○ Fewer layers of abstraction (No need for DFS, thanks to Raft)

● Target:

○ Building block (storage) for other distributed systems (Transactional KV store)

TiKV

A little bit of history

Architecture

TiKV is

● Distributed

● Transactional

● Key-value store

Distributed

TiDB

TiDB

TiDB

A
p

p
lic

at
io

n
vi

a
M

yS
Q

L
P

ro
to

co
l TiKV

TiKV

TiKV

TiKV

TiKV

TiKV

... ...

PD Cluster

DistSQL
API

KV API

PD

PD PD

Metadata

TSO / Data Location

Distributed

Node A

Region 3

Node B Node C Node D

Region 3

Region 2 Region 2

Region 3

Region 1*

Region 2

Region 1 Region 1

TiKV is

Rocks DB

Transactional API

MVCC

Raft

Coprocessor

Transactional

● ACID

● Snapshot isolation, repeatable reads,

linearizable

Transactional

● Collaborative

● MVCC

Reliability

● Regression and performance testing

● Jepsen

● Chaos Mesh

● TLA+

Benchmarks

● YCSB

● TiDB c.f. Spanner

● Google cloud, $2100-2300, end of 2019

Benchmarks

Looking forward

Flexibility

● Plugable storage engine

● Versioned API

Stability

● Latency-based flow control

● Auto-scaling

● Improve latency jitter

● SATA SSD optimizations

● Memory usage

● Raft joint consensus

Performance

Community

Community

● Open source since 2016

● CNCF incubating project

Community

● SIGs

● Engine

● Raft

● Transactions

● Coprocessor

Community

https://github.com/tikv/tikv

tikv-wg

@nrc

https://tikv.org/chat

Thank You !

