
Threat Modelling: 
Securing Kubernetes 
Infrastructure & 
Deployments
Rowan Baker 
@controlplaneio





Acknowledgement



What this talk is about

• Threat Modelling Kubernetes
• Defining Kubernetes Security Controls & Architectures
• Testing 
• SOC integration
• Addressing Compliance Culture Shock
• Gotchas



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

Used as both a noun and a verb

The exact definition doesn’t matter, doing it does.



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

Threat modelling can prevent you from finding out about 
security issues when it’s too late…



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

As early as possible

• Once a shared understanding is established
• When features are designed for every subsequent 

release



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

Each stakeholder brings their own unique perspective



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

Architects know how things should work



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

DevOps know how things actually work



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

And others:

• SOC/ VA/ Threat Intelligence 
• Product Owners 

Caution- if these groups are silo’d - run preparatory 
sessions.



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

In a room with a whiteboard

Or

Over video conferencing tools

• At the mercy of collaborative tooling



Threat Modelling in a Slide (ish)

• What
• Why
• When
• Who
• Where
• How?

4 steps:

1. What are you building?

2. What can go wrong once it’s built?

3. What should you do about those things that can go 

wrong?

4. Did you do a decent job of analysis?



What does this look like for Kubernetes?

Kubernetes Cluster Threat 
Models
● Provisioning and Scaling
● Runtime & Cluster 

configuration
● CI/CD & Application 

deployment



Data Flow Diagram - Kubernetes Pod Launch



Data Flow Diagram - CI/CD



What can go wrong?

Techniques

• STRIDE
• PASTA

Sources

• MITRE ATT&CK
• Reverse engineer benchmarks

Brainstorm and make notes first



Existing Runtime Models - CNCF Attack Trees

We worked together with other 
members of the CNCF Financial User 
Group to threat model the whole 
Kubernetes system

The initial set of Attack Trees are 
now open sourced and available on 
GitHub:

https://github.com/cncf/financial-
user-group/tree/master/projects/k
8s-threat-model

https://github.com/cncf/financial-user-group/tree/master/projects/k8s-threat-model
https://github.com/cncf/financial-user-group/tree/master/projects/k8s-threat-model
https://github.com/cncf/financial-user-group/tree/master/projects/k8s-threat-model


Attack Trees

“Attack trees provide a formal, 
methodical way of describing 
the security of systems, based 
on varying attacks. Basically, 
you represent attacks against a 
system in a tree structure, with 
the goal as the root node and 
different ways of achieving 
that goal as leaf nodes.”

Bruce Schneier (1999)



Kubernetes Runtime - What can go wrong?



What are we going to do about the things that go wrong?



What are we going to do about the things that go wrong?



Complementing Controls - Networking



Complementing Controls - Runtime

Security Context for Pods & 
Containers

• Run as non-root User
• Run as unprivileged
• Drop all Linux capabilities
• Use AppArmor Profiles/ SELinux

Container Based IDS

Sandbox technologies



Complementing Controls - Runtime

Security Context for Pods & 
Containers

• Run as non-root User
• Run as unprivileged
• Drop all Linux capabilities
• Use AppArmor Profiles/ SELinux

Container Based IDS

Sandbox technologies



Complementing Controls - Runtime

Security Context for Pods & 
Containers

• Run as non-root User
• Run as unprivileged
• Drop all Linux capabilities
• Use AppArmor Profiles/ SELinux

Container Based IDS

Sandbox technologies



Complementing Controls - RBAC & Policy

• Kubernetes RBAC

• Admission Controllers

• Open Policy Agent
• Custom Policy

• Pod Security Policy

• Multiple Implementations
• Gatekeeper

• Plain OPA



Complementing Controls - Supply Chain Security

Build Application 
image DeployCodeBase image

Pipeline 
metadata: 

Grafeas, in-toto

Vulnerability 
scanning: Clair, 
Micro Scanner, 
Anchore Open 
Source Engine

Admission 
control: K8s 

admission 
controllers, Kritis, 

Portieris

Updates: TUF, 
Notary

Images: Docker 
Distribution (Hub)

(DevSecOps Kubernetes Pipeline Workshop KubeCon Seattle 2018)



When Security takes over….



When Security takes over….



Determining Control Sets

Start simple!

More complex control sets require further:

● Automation
● Testing

Risk is the determining factor



Determining Control Sets

Risk is the determining factor



Defence in depth with Attack Trees

Attack trees can demonstrate 
how seemingly unrelated 
controls can mitigate threats

ID Control
ST1 in-toto Admission Controller
ST2 kubesec Admission Controller
ST4 gpg signed commits
C1 2FA

C5
Devs have read only container image 
registry access

C6 Protected Branches enforce Peer Review

D2
CI server has no overwrite permission in 
container image registry

D4
CI server has read only permission in 
Github

E2 Static Code analysis
E3 Image vulnerability scanning
E4 Dynamic Security testing



Automated Testing

The only way to validate control implementation is through automated 
tests

Test the threat to be mitigated, not the specifics of the mitigating 
control

Security tests for DoD under development



Integrating Kubernetes with a global SOC

1. Threat Model
2. Reproduce the attacks against test clusters repeatedly 

(Tests)
3. Gather the signals generated
4. Work with SOC to configure their SIEM
5. Re-run the test cases
6. Make sure the SOC lights up



Addressing Compliance Culture shock

Precedents and other standards are always helpful

• CIS Benchmarks & associated tooling
• GKE PCI DSS OS

Map controls to required compliance standards & policies

• Automated tests demonstrate compliance in near real-time
• One Control = One Automated Test = One Compliance 

requirement fulfilled

May need a program to rewrite/modify policy for cloud native

• Opportunity to automate tests for existing questionnaires



Gotchas - Node Segregation



Istio without CNI Plugin

• init containers require NET_ADMIN & NET_RAW capabilities
• requires relaxation of Pod Security Policies

Solution is to implement custom Pod Security Policy with allowlist using OPA

*

Gotchas - Service Mesh & PSPs

Attack doesn’t 
work with 
service mesh



Gotchas - On Prem mindset in cloud

Introducing Cloud Native and Kubernetes into a large regulated organisation 
requires as much of a cultural change as a technological change.

Byproducts of on-prem mindset

• Heavily manual change control
• Restrictive architectures
• Reliance on detective controls



TLDR

• Threat Model

• Draw Attack Trees

• Apply Controls

• Test!

• Integrate with SOC



We’re Hiring!

Just like everyone else ;)




