
TAMING STATE/DATA CHALLENGES FOR ML 
APPLICATIONS AND KUBEFLOW

Skyler Thomas
Distinguished Technologist
skyler.thomas@hpe.com



WHO AM I? 
WHAT DO I HOPE YOU WILL LEARN TODAY?

Lead architect for the HPE Ezmeral Data Fabric and HPE Ezmeral ML Ops’ Kubeflow support

Although these products can help with many of the challenges I describe today, I will not be talking about 
these products capabilities. I will have links at the end if you want to check out what we do.

I am hoping we are able to accomplish several things today:

•First, I want to discuss the challenges that occur when you mix data scientists working on machine learning and AI with IT operations
•Next, I will give a brief overview of the Kubeflow workflow and the various state and data challenges that exist in Kubeflow
•Finally, I will dive a bit deeper into specific challenges you will face building these applications and suggest tips for overcoming them. 

I will then answer your questions...

At the end of the session, I hope when you leave this session that you will be a more prepared to face the 
state and data challenges Kubeflow presents and have a few ideas in your back pocket to solve them



DATA SCIENTISTS AND IT HAVE CONFLICTING GOALS!

We have standard applications we use here!

Limit the hardware you use!

We require a security review before you can run that!

No! you can’t see THAT data!

Share!Virtualize!

Standard nodes!



DATA SCIENTISTS VS IT

Antithetical Goals
•Data Scientists want custom hardware - high memory, GPU’s and TPU’s. IT 

wants cookie cutter commodity machines wherever possible
•Data Scientists want all the hardware they can get. IT wants to encourage 

efficiency and sharing
•IT wants to standardize applications and reduce license costs. Data Science 

wants to use a variety of applications and frameworks
•IT wants to ensure software is safe and supported. Data Science wants cutting 

edge tools from academia
•IT wants to carefully categorize and restrict data for security and regulatory 

reasons. Data science wants to have access to as much raw data as possible 
for training their models.



ISOLATION IS THE SOLUTION THAT HAS WORKED BEST UNTIL NOW

* Kubernetes doesn’t mean isolation is 
dead. Ephemeral data scientist 
Kubernetes compute environments can 
still make sense for various reasons. 
Just be careful about data gravity 
challenges.. 



TRADITIONAL 
SOLUTION - ISOLATION

There has been no good way to solve these issues 
except for isolation

The most successful method has been to back a truck 
full of money up to data science to create their own 
environments with tons of memory and GPU’s

Hand rolled every time

Cloud has helped but TPU and GPU environments 
have unique challenges



BIGGEST LESSON FROM BIG DATA, SPARK, AND TENSORFLOW



BIGGEST LESSON FROM BIG DATA, 
SPARK, AND TENSORFLOW ON 
BARE METAL?

Manual environment creation is 
expensive and time consuming

Standing up new environments for each 
set of tasks does not work



ENTER KUBERNETES



KUBERNETES

Kubernetes solved several critical problems with traditional ML or Big Data environments
• Hardware does not need to be dedicated to data science
• Complex scheduling allows different node types to be used (GPU/TPU high mem vs normal nodes)
• App containerization means many more types of apps can be support

However, Kubernetes has a number of challenges fitting into the data science world

The name Data science is a clue

Machine learning requires ton of data or state to work

Kubernetes was initially designed for stateless apps.

Over time handling state in applications have improved on Kubernetes… We have things like:
• Persistent Volumes and Storage Classes
• CSI
• Volume based scheduling
• And others

But, there are still MAJOR challenges



KUBEFLOW WORKFLOW



STATE

Notebooks 

How can we share 
notebooks between 
team members?

Training Data

We can might need to 
handle hundreds of 
Petabytes of Training 
Data. How do we 
move this close to 
compute? How do we 
protect privacy if 
some of this data is 
sensitive? How do we 
follow legal 
requirements?

Libraries 

How do we avoid 
teaching every data 
scientist to become a 
containerization 
expert just so they can 
use a particular 
python library in their 
training code?

Models

How do we register, 
query and create 
model files? How do 
we auto-promote 
models for test and 
serving?

Logs 

Many Distributed 
Training solutions 
generate logs that are 
important to read by 
data scientists?

There are different types of state that Machine Learning 
applications need to deal with. Each type of data poses its 
own set of challenges



NOTEBOOKS



NOTEBOOKS
Notebooks are where data scientists live most of the time

Container based

Usually Jupyter or Zepplin (if Spark app)

Normally run as a service account

Examine and scrub data

Experiment and visualize data

Create toy models

Launch large training jobs and automations



DISTRIBUTED TRAINING



DISTRIBUTED TRAINING

Most Kubeflow and other ML Training technologies follow a similar “Job Operator” pattern. This includes: 
Spark, TensorFlow, and PyTorch

A ML Job Custom Resource of some type is submitted via Kubectl or other client tool to the Kubernetes API Server

A ML Job Controller of some type sees the submission and then dynamically creates a set of control or parameter server pods and a set of worker pods

The worker pods retrieve/manipulate training data via api’s like CSI/POSIX, S3/Object Storage, or HDFS

A model and logs are generated

The job completes and the pods are torn down

Tip: Anytime a custom resource type is submitted to the Kubernetes API server is an opportunity to use an admission controller webhook to intercept the request and 
create various resources in the appropriate namespace. This can help significantly with ensuring the proper secrets, ConfigMaps, or PersistentVolumes are created



MODEL SERVING



MODEL SERVING

Model serving typically doesn’t require training data but there are still some challenges from a state perspective

Models created during distributed training must also be available for serving

Are the model files inserted into a new container or is it mounted as a volume?

Is the model container moved into production via copying using a workflow engine like Argo?

Where are the containers stored? A shared docker registry or a private registry? How go you ensure that only approved 
models in the approved registry are served by model serving infrastructure? (Seldon, Tensorflow Serving, KFServing)



CHALLENGE: DATA API AVAILABILITY



Unlike Hadoop, ML tools are not unified 
around a single data access API. Different ML 
applications require different storage API’s

CHALLENGE: DATA API 
AVAILABILITY

OBJECT STORAGE/S3 – USEFUL 
API FOR SIMPLICITY/CAN FIT INTO 
A PIPELINE UI VERY EASILY. CAN 

HAVE ISSUES WITH SPEED & 
THROUGHPUT. LONG TERM WORK 
INTEGRATING INTO KUBERNETES

POSIX – USEFUL FOR SPEED. FITS 
KUBERNETES MODEL VIA CSI 

NICELY. UNLESS CSI DRIVER IS FOR 
DISTRIBUTED FILE SYSTEM, 

COPYING DATA IS CHALLENGING

HDFS – USEFUL FOR RAW 
THROUGHPUT. LIMITED SUPPORT 
FROM NON-HADOOP HERITAGE 

TOOLS. NOT PLATFORM 
INTEGRATED/MUST BE 

EMBEDDED IN CONTAINERS

NFS – SLOW. DIFFICULT TO 
SUPPORT EXTREME 

THROUGHPUT. STABILITY ISSUES. 
REQUIRES CONTAINER 

EMBEDDING

VARIOUS DATABASE PROTOCOLS –
REQUIRES EMBEDDING IN 

CONTAINERS



CHALLENGE: LIBRARY STATE



CHALLENGE: LIBRARY STATE

Each training job or notebook may need different libraries or other assets

Two major schools of thought

• Build container for each task
• Mount a volume for libraries or assets into a common container

The container route has several downsides

• Data scientist must be more skilled to some degree with container creation
• Roll your own container security issues
• Container management and storage

Volume mounting requires more time and planning. Probably requires a CSI provider with a distributed file 
system

Automate container creation through pipelines or a workflow engine like Argo. Recipes or container scripts 
break down quickly



CHALLENGE: TRAINING DATA GRAVITY



CHALLENGE: TRAINING DATA GRAVITY

Data Gravity is the idea that its hard to move data around and that data naturally attracts compute closer to 
itself. There are a number of reasons for data gravity:
• Time and cost to move data. We have customers building self driving simulation environments. They have 

hundreds of Petabytes of sensor data that training pods must access. It is very difficult to copy this data 
somewhere

• Government Regulations. Many countries require data to remain inside their borders
• Privacy Concerns. Many companies or governments restrict where sensitive data can be moved or how that 

data can be accessed.
Some data gravity tips:
• When data must live outside the cloud and within a corporate firewall, you must choose between allowing 

external compute to access the data or creating an on-prem Kubernetes environment. In a large number of 
cases, the on-prem solution is superior for performance, security, or legal reasons

• In many cases, spinning up quick Kubernetes solutions in the cloud may be useful to handle the worries 
about Data Scientists rolling their own containers. Consider a shared cloud-based data lake for the 
ephemeral data scientist Kubernetes environments



CHALLENGE: TRAINING DATA LOCALITY



CHALLENGE: TRAINING DATA LOCALITY

The Hadoop world spent an extreme amount of time ensuring data locality and optimizing the HDFS 
protocol for this type of access. 

As network speeds have improved, true data locality has become less important. In many cases fast 
POSIX access to a quality distributed file system is enough

Block local storage, scheduler improvements, and custom schedulers may all make true data locality 
something that is reasonable for Kubernetes ML frameworks in the future. For instance, the Spark 
project is looking closely at how to do this with HDFS. However, at this point, true data locality for 
machine learning is more of a future goal rather than reality. 



CHALLENGE: DATA SECURITY



CHALLENGE: DATA SECURITY
• Data security is one of the most complex subjects for machine learning applications and Kubernetes.
• We will not be able to cover all the nuances in this presentation but I want to give you a feel for where the 

issues come from and a few tips. At some point, much of the pain will have to be shouldered by Kubernetes 
ML environment Vendors because it is really challenging to do things right.

• There are two main causes for the difficulties:
• Notebook Service Accounts
• Namespaces

• If you think about data, there are three types of data:
• Globally Shared Data – This is data shared between multiple teams, users, and projects
• Team Shared Data – This is data shared between team members
• User Data – This is data for a single data scientist



CHALLENGE: DATA SECURITY & VOLUMES
• CSI, PVs, and StorageClasses

• CSI uses secrets with storage backend credentials. These are attached to PV’s or StorageClasses to pass to the driver so 
it can access data securely.

• Individual Secrets are difficult to protect in a namespace shared by multiple users. 
• This means its tricky to use PV’s for user data in a shared namespace.
• StorageClasses are global so its tricky to use user specific 

• Tip: Plan your namespaces and data owners VERY carefully. Think of the security implications of where your 
secrets have to be located



CHALLENGE: DATA SECURITY & TEAM RESOURCES
• Kubeflow has the notion of “profile” namespaces for individual users. This is where user notebooks run. 

Unfortunately, this may make it challenging for your users to access team data in a notebook.
• Most vendors have the notion of Tenant, Team, or Project namespaces
• Most organizations want to manage their Kubernetes resource consumption via quotas at a team level. This 

means team/tenant namespaces should be created. Distributed training jobs should run in those 
namespaces

• Tip: Use webhooks (admission controllers), Istio, and JupyterHub to create resources like volumes and 
storage classes in “profile” namespaces for team volumes.

• Tip: Training jobs that run in team namespaces should probably access only team volumes. If individual user 
volumes must exist in a team namespace, think carefully about the implication of having a users credential 
inside a secret in that namespace and the RBAC required to protect it. If a vendor is generating the team or 
project namespace, ensure that they set the RBAC properly for secrets in that namespace



CHALLENGE: DATA SECURITY & SERVICE ACCOUNTS
• Data Scientists live in notebooks
• Notebooks exist in containers. These containers are launched by Jupyter Hub and use Istio to route a users 

browser request to the right container
• Container must therefore normally run as a service account
• There is a need for the container running as the user to perform many data accesses (reading a file) and 

Kubernetes API server operations (submitting a job) on behalf of the user
• The notebooks service account complicates things significantly:

• Security model becomes more difficult to create (assigning RBACs to SA instead of user)
• Must ensure that all the proper tokens for backends are available and mounted inside notebook
• Must deal with various auditability concerns 

• Tip: Use webhooks (admission controllers), Istio, and JupyterHub to ensure secrets with the proper 
credentials are created and mounted to the notebook container when it is created

• Tip: Be very careful with allow exec RBAC for notebook containers



MORE INFORMATION
Email: skyler.thomas@hpe.com

HPE Ezmeral ML Ops: https://www.hpe.com/us/en/software/machine-
learning-operations.html
HPE Ezmeral Data Fabric: https://www.hpe.com/us/en/software/data-
fabric.html

mailto:skyler.thomas@hpe.com
https://www.hpe.com/us/en/software/machine-learning-operations.html
https://www.hpe.com/us/en/software/data-fabric.html

