6 o

KubeCon CloudNativeCon
Europe 2020

Virtual

Startup Containers in Lightning Speed
with Lazy Image Distribution

Kohei Tokunaga, NTT Corporation

6 o

KubeCon | CloudNativeCon
Europe 2020

® Pull is one of the time-consuming steps in container lifecycle

® Stargz Snapshotter, non-core subproject of containerd, is trying to solve it by lazy-pulling

images leveraging stargz image by Google
* Further runtime optimization is also held with an extended version of stargz (eStargz)

python:3.7 (print “hello”)

legacy
stargz

Host: EC2 Oregon (m5.2xlarge, Ubuntu 20.04)
Registry: Docker Hub (docker.io)

0 5 10 15 20 25 Commit b53e8fe

(See detailed info in the later slides)

estargz

W pull mcreate Wrun [sec]

® There are also other OCl-alternative image distribution strategies in container ecosystem

. . . £ .
Pull is time-consuming S| B Vit

Europe 2020

pulling packages accounts for 76% of container start time,
but only 6.4% of that data is read [Harter et al. 2016]

[Harter et al. 2016] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. "Slacker: Fast Distribution with Lazy Docker
Containers". 14th USENIX Conference on File and Storage Technologies (FAST '16). February 22-25, 2016, Santa Clara, CA, USA

Registry Node
22 i
5 . &ZF -
Image Container

Workarounds are known but not enough

Caching images

Minimizing image size :
Language runtimes, frameworks, etc.

OCl/Docker Specs for image distribution 2. .5 Virtual

Europe 2020

A container is a set of layers

Frootfs

Extract
&
Merge

Image Spec

® Defines layers and metadata (image
manifest, etc.)

® Layer is defined as tar (+compression)

® Rootfs can be composed by merging layers

Registry
~
GET /v2/<image-name>/b|obs/|
: layers
sha256:1a3b5c¢... (blobs)

sha256:6ccde1)

Distribution Spec

N—

® Defines HTTP API of registry

® Layer can be fetched as a “blob” named
with a content-addressable digest

® Optional support for HTTP Range Request

£ e
Problems on the OCl/Docker Specs 2. .Y Virtwal

Europe 2020

A container is a set of tarball layers

A container can’t be started until the all layers become locally available
even if the most of the contents won’t be used on container startup

layer =
tarball (+compression)
€ &)
_ ® Need to scan the entire blob even for
— TN bl hash extracting single file entry
) bin/Is * If the blob is gzip-compressed,
GET /v2/<image-name>/blobs/ I it’s non-seekable anymore
etc/passwd
sha256:deadheaf .
<ha256:1a3b5c. etc/group ® No parallel extraction
sha256:ffehac usr/bin/apt * Need to scan the blob from the
sha256:6¢ccdel... top, sequentially
—

Lazypull with containerd Stargz Snapshotter S|\ B _lVital

Europe 2020

https://github.com/containerd/stargz-snapshotter

Stargz Snapshotter

® Non-core subproject of containerd

Enntainerm ® Works as a plugin of containerd

® Standard-compliant lazy pull leveraging stargz image by Google

~
kubelet, etc

Iazypull> l:untainerm

~— Stargz OCl
Container Registry Snapshotter || runtimes

doesn’t download the entire image on pull operation
but fetches necessary chunks of contents on-demand

https://github.com/containerd/stargz-snapshotter

Standard-compliant lazypull $ | B _lirtat

Europe 2020

® Leverages OCl/Docker compatibility of stargz:
e can be lazily pulled from standard registries
* can also be run by legacy runtimes (but not lazily pulled)
® Mounts rootfs snapshots as FUSE and downloads accessed file contents on-demand

Standard Registries | Node

(e.g. Docker Hub)
Kubelet, etc. Container

—
I :untainerm

Stargz
Snapshotter —
>Z pulling file contents on demand

still pullable/runnable implemented as a
by legacy runtimes remote snapshotter plugin

Stargz archive format 2 o Virlual

Europe 2020

® Proposed by Google CRFS project: https://github.com/google/crfs
® Stands for Seekable targz so it’s seekable but still valid targz = usable as a valid OCl/Docker image layer
® Entries can be extracted separately

* Can be fetched separately from registries using HTTP Range Request

tar.gz layer stargz layer
¢ &) € 5
R e —7— 8zip member
bas inrbes _i_ per regular file
bin/ls bin/ls
non-seekable etc/passwd etc/passwd]' seekable
negds to scan the /e.tc/group etc/group ca.n be extracted per-file
entire blob even for with HTTP Range Request
getting single entry usr/bin/apt usr/bin/apt
TOCEntries:
index and files metadata

https://github.com/google/crfs

eStargz archive for prefetch 8 B lirtal

Europe 2020

® NW-related overheads can’t be ignored for on-demand fetching with stargz
® eStargz enables to prefetch files that are llikey accessed during runtime (= prioritized files)
® Filesystem prefetches and pre-caches these files with a single HTTP Range Request on mount

stargz layer eStargz layer
G &) i o2 @
bin/bash : bin/bash |_ Files prefetched
bin/ls sort entrypoint.sh | by a single HTTP Range Request

bin/ls landmark file

Prioritized files
likely accessed
during runtime too

entrypoint.sh Files fetched on demand

— but aggressively download
in background

usr/bin/apt usr/bin/apt

TOCEntries TOCEntries

Workload-based runtime optimization with eStargz — mec V g W

Europe 2020

® |everaging eStargz, CLI converter command provides workload-based optimization
® Generally, containers are built with purpose

 Workloads are defined in the Dockerfile, etc. (entrypoint, user, envvar, etc...) and stored in the image
® CLI converter runs provided image in a sandbox and profiles all file accesses

* Regards accessed files are also likely accessed during runtime (= prioritized files in eStargz)

e Stargz Snapshotter will prefetch and pre-caches these files when mounts this eStargz image

Sandboy
Original Image @
, eStargz
image
Contains workload
information
Specified by Dockerfile, etc. Custom workloads can be

(entrypoint, user, envvar) specified throught CLI options

Benchmarking results | o

Europe 2020

® Measures the container startup time which includes:
e Pulling an image from Docker Hub
e For language containers, running “print hello world” program in the container
* For server containers, waiting for the readiness (until “up and running” message is printed)
» This method is based on Hello Bench [Harter, et al. 2016]
® Takes 95 percentile of 100 operations

® Host: EC2 Oregon (m5.2xlarge, Ubuntu 20.04)
® Registry: Docker Hub (docker.io)

® Target commit: b53e8fe8d37751753bc623b037729b6a6d9c1122

[Harter et al. 2016] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-

Dusseau, Remzi H. Arpaci-Dusseau. "Slacker: Fast Distribution with Lazy

Docker Containers". 14th USENIX Conference on File and Storage

Technologies (FAST '16). February 22-25, 2016, Santa Clara, CA, USA Credit to Akihiro Suda (NTT) for discussion and experiment environment

ubeCon

Time to take for container startup .=. ...

Euro|

python:3.7 (print “hello”)

0

5 10 15 20 25

mpull Wcreate ®run [sec]

Waits for prefetch completion
Credit to Akihiro Suda (NTT) for discussion and experiment environment

ubeCon

Time to take for container startup .=. ...

Euro|

gcc:9.2.0 (compiles and runs printf(“hello”);)

0 5 10 15 20 25 30

mpull Wcreate ®run [sec]

Credit to Akihiro Suda (NTT) for discussion and experiment environment

£2 Eﬂ
ubeCon

Time to take for container startup .=. ...

Euro|

glassfish:4.1-jdk8 (runs until “Running GlassFish” is printed)

0 5 10 15 20 25

M pull Wcreate Wrun [sec]

Credit to Akihiro Suda (NTT) for discussion and experiment environment

Expected use-cases 2 2. Virlual

Europe 2020

Speeding up base image distribution on image build

® Especially for temporary base images of “dev” stages in multi-stage build
* won’t be included in the result image
* https://github.com/moby/buildkit/pull/1402

Speeding up dev pipeline (or building/testing environment)
® The initial motivation in Go community to invent stargz was to speed up
the builder image distribution in their build system

e https://github.com/golang/go/issues/30829 Stargz Snapshotter is still in early stage
» Needs more performance improvements for
Sharing large scientific software stack (e.g. ML frameworks) the filesystem
® For example, ML frameworks tend to be large (> 1GB) » Lazy pull performance seems to be affected
by the internet condition (e.g. CDN), etc.

Improving cold start performance (e.g. Serverless) > Be careful for the fault tolerance until the
® But needs more investigation layer contents are fully cached

e https://github.com/knative/serving/issues/5913 > ..

Feedbacks/comments are always welcome!

https://github.com/moby/buildkit/pull/1402
https://github.com/golang/go/issues/30829
https://github.com/knative/serving/issues/5913

6 o

Other OCl-alternative lazy image distribution o | e

Europe 2020

Slacker: https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
® Uses NFS infra for the distribution of rootfs snapshots of containers
® Registries are used for sharing snapshot IDs among hosts

CernVM-FS: https://cvmfs.readthedocs.io/en/stable/
® FUSE Filesystem by CERN for sharing High Energy Physics (HEP) software on worldwide infrastructure
® Software stack can be mounted and lazily downloaded from CernVM-FS “repository” via HTTP
® Remote Snapshotter implementation for containerd
e https://github.com/cvmfs/containerd-remote-snapshotter
® On-going discussion towards integration with Podman
* https://github.com/containers/storage/issues/383

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://cvmfs.readthedocs.io/en/stable/
https://github.com/cvmfs/containerd-remote-snapshotter
https://github.com/containers/storage/issues/383

Other OCl-alternative lazy image distribution ‘; mec Virteal

Europe 2020

Filegrain: https://github.com/akihirosuda/filegrain

® Proposed by Akihiro Suda (NTT)

® OCI compliant image format but uses continuity manifests as layers

® Animage can be mounted and files are pulled lazily

® Each file is treated as a content-addressable blob => de-duplication in file granuality

On-going discussion towards “OCIv2”: https://hackmd.io/@cyphar/ociv2-brainstorm
® Proposed by Aleksa Sarai (SUSE)

® Brainstorm is in progress (2020/07)

® Lazy fetch support, mountable filesystem are also in the scope

crfs-plugin for fuse-overlayfs: https://github.com/giuseppe/crfs-plugin
® Proposed by Giuseppe Scrivano (Red Hat)
® Plugin of fuse-overlayfs for mounting stargz layer

https://github.com/akihirosuda/filegrain
https://hackmd.io/@cyphar/ociv2-brainstorm
https://github.com/giuseppe/crfs-plugin

3 m Virtual

KubeCon | CloudNativeCon

® Pullis one of the time-consuming steps in the container lifecycle.

® Stargz Snapshotter, non-core subproject in containerd, is trying to solve it by lazy-pulling
images leveraging stargz image by Google.
e Standard compliant so can be pushed to and lazily pulled from standard registries
 Workload-based runtime optimization is also held with eStargz

® There are also other OCl-alternative image distribution strategies in container ecosystem

Feedbacks and suggestions are always welcome!
https://github.com/containerd/stargz-snapshotter

https://github.com/containerd/stargz-snapshotter

r

KubeCon

Ny

CloudNative

44444

Hﬁm@gm\\”

M/’W &E') KEEP CLOUD NATIVE
CONNECTED

P95

éU

i@@

e

$ (© &
a x

