
Kohei Tokunaga, NTT Corporation

Startup Containers in Lightning Speed
with Lazy Image Distribution

l Pull is one of the time-consuming steps in container lifecycle

l Stargz Snapshotter, non-core subproject of containerd, is trying to solve it by lazy-pulling
images leveraging stargz image by Google
• Further runtime optimization is also held with an extended version of stargz (eStargz)

l There are also other OCI-alternative image distribution strategies in container ecosystem

Summary

Host: EC2 Oregon (m5.2xlarge, Ubuntu 20.04)
Registry: Docker Hub (docker.io)
Commit b53e8fe
(See detailed info in the later slides)[sec]

0 5 10 15 20 25

estargz

stargz

legacy

python:3.7 (print “hello”)

pull create run

Pull is time-consuming
pulling packages accounts for 76% of container start time,

but only 6.4% of that data is read [Harter et al. 2016]

[Harter et al. 2016] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau. "Slacker: Fast Distribution with Lazy Docker
Containers". 14th USENIX Conference on File and Storage Technologies (FAST ’16). February 22–25, 2016, Santa Clara, CA, USA

Caching images

Minimizing image size

Cold start is still slow

Not all images are minimizable
Language runtimes, frameworks, etc.

Workarounds are known but not enough

NodeRegistry

Image Container

pull run

OCI/Docker Specs for image distribution

A container is a set of layers

Distribution Spec
l Defines HTTP API of registry
l Layer can be fetched as a “blob” named

with a content-addressable digest
l Optional support for HTTP Range Request

Registry

sha256:deadbeaf…
sha256:1a3b5c…

sha256:ffe63c…
sha256:6ccde1…

GET /v2/<image-name>/blobs/

layers
(blobs)

rootfs

Extract
&

Mergemani
fest

Image Spec
l Defines layers and metadata (image

manifest, etc.)
l Layer is defined as tar (+compression)
l Rootfs can be composed by merging layers

layers

Image

Problems on the OCI/Docker Specs

sha256:deadbeaf…
sha256:1a3b5c…

sha256:ffe63c…
sha256:6ccde1…

GET /v2/<image-name>/blobs/

bin/bash

bin/ls

etc/passwd

etc/group

usr/bin/apt

���

layer =
tarball (+compression)

A container is a set of tarball layers
A container can’t be started until the all layers become locally available

even if the most of the contents won’t be used on container startup

l Need to scan the entire blob even for
extracting single file entry
• If the blob is gzip-compressed,

it’s non-seekable anymore

l No parallel extraction
• Need to scan the blob from the

top, sequentially

Lazypull with containerd Stargz Snapshotter

Stargz
Snapshotter

kubelet, etc

OCI
runtimesContainer Registry

lazypullstargz
images

l Non-core subproject of containerd
l Works as a plugin of containerd
l Standard-compliant lazy pull leveraging stargz image by Google

Stargz Snapshotter

doesn’t download the entire image on pull operation
but fetches necessary chunks of contents on-demand

https://github.com/containerd/stargz-snapshotter

https://github.com/containerd/stargz-snapshotter

Standard-compliant lazypull

l Leverages OCI/Docker compatibility of stargz:
• can be lazily pulled from standard registries
• can also be run by legacy runtimes (but not lazily pulled)

l Mounts rootfs snapshots as FUSE and downloads accessed file contents on-demand

Proc

Stargz
Snapshotterstargz

images

containerKubelet, etc.

Standard Registries
(e.g. Docker Hub)

Node

Lazy
pull

Mount rootfs as FUSE
pulling file contents on demand

still pullable/runnable
by legacy runtimes

implemented as a
remote snapshotter plugin

Stargz archive format
l Proposed by Google CRFS project: https://github.com/google/crfs

l Stands for Seekable targz so it’s seekable but still valid targz = usable as a valid OCI/Docker image layer
l Entries can be extracted separately

• Can be fetched separately from registries using HTTP Range Request

tar.gz layer stargz layer

bin/bash

bin/ls
etc/passwd
etc/group

usr/bin/apt

��� TOCEntries:
index and files metadata

needs to scan the

entire blob even for

getting single entry

can be extracted per-file

with HTTP Range Request

bin/bash

bin/ls

etc/passwd

etc/group

usr/bin/apt

���

non-seekable seekable

gzip member
per regular file

https://github.com/google/crfs

eStargz archive for prefetch

l NW-related overheads can’t be ignored for on-demand fetching with stargz
l eStargz enables to prefetch files that are llikey accessed during runtime (= prioritized files)
l Filesystem prefetches and pre-caches these files with a single HTTP Range Request on mount

landmark file

Files prefetched
by a single HTTP Range Requestbin/ls

usr/bin/apt

���
entrypoint.sh

sort

stargz layer eStargz layer

likely accessed
during runtime too

Prioritized files

bin/bash

bin/ls

usr/bin/apt

���

entrypoint.sh

bin/bash

��� ���

Files fetched on demand
but aggressively download
in background

TOCEntriesTOCEntries

Workload-based runtime optimization with eStargz

l Leveraging eStargz, CLI converter command provides workload-based optimization
l Generally, containers are built with purpose

• Workloads are defined in the Dockerfile, etc. (entrypoint, user, envvar, etc…) and stored in the image

l CLI converter runs provided image in a sandbox and profiles all file accesses

• Regards accessed files are also likely accessed during runtime (= prioritized files in eStargz)

• Stargz Snapshotter will prefetch and pre-caches these files when mounts this eStargz image

eStargz
imageMeta

data

Original Image

Optimized image
for the workload

Contains workload
information

Specified by Dockerfile, etc.

(entrypoint, user, envvar)

Custom workloads can be

specified throught CLI options

Profile file accesses
in a sandbox

proc

sandbox

Benchmarking results

l Measures the container startup time which includes:
• Pulling an image from Docker Hub
• For language containers, running “print hello world” program in the container
• For server containers, waiting for the readiness (until “up and running” message is printed)
Ø This method is based on Hello Bench [Harter, et al. 2016]

l Takes 95 percentile of 100 operations

l Host: EC2 Oregon (m5.2xlarge, Ubuntu 20.04)

l Registry: Docker Hub (docker.io)

l Target commit: b53e8fe8d37751753bc623b037729b6a6d9c1122

[Harter et al. 2016] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau. "Slacker: Fast Distribution with Lazy
Docker Containers". 14th USENIX Conference on File and Storage
Technologies (FAST ’16). February 22–25, 2016, Santa Clara, CA, USA Credit to Akihiro Suda (NTT) for discussion and experiment environment

Time to take for container startup

0 5 10 15 20 25

estargz

stargz

legacy

python:3.7 (print “hello”)

pull create run [sec]

Waits for prefetch completion
Credit to Akihiro Suda (NTT) for discussion and experiment environment

Time to take for container startup

0 5 10 15 20 25 30

estargz

stargz

legacy

gcc:9.2.0 (compiles and runs printf(“hello”);)

pull create run [sec]

Credit to Akihiro Suda (NTT) for discussion and experiment environment

Time to take for container startup

0 5 10 15 20 25

estargz

stargz

legacy

glassfish:4.1-jdk8 (runs until “Running GlassFish” is printed)

pull create run [sec]

Credit to Akihiro Suda (NTT) for discussion and experiment environment

Expected use-cases

Speeding up base image distribution on image build
l Especially for temporary base images of “dev” stages in multi-stage build

• won’t be included in the result image
• https://github.com/moby/buildkit/pull/1402

Speeding up dev pipeline (or building/testing environment)
l The initial motivation in Go community to invent stargz was to speed up

the builder image distribution in their build system
• https://github.com/golang/go/issues/30829

Sharing large scientific software stack (e.g. ML frameworks)
l For example, ML frameworks tend to be large (> 1GB)

Improving cold start performance (e.g. Serverless)
l But needs more investigation

• https://github.com/knative/serving/issues/5913

Stargz Snapshotter is still in early stage
Ø Needs more performance improvements for

the filesystem
Ø Lazy pull performance seems to be affected

by the internet condition (e.g. CDN), etc.
Ø Be careful for the fault tolerance until the

layer contents are fully cached
Ø …

Feedbacks/comments are always welcome!

https://github.com/moby/buildkit/pull/1402
https://github.com/golang/go/issues/30829
https://github.com/knative/serving/issues/5913

Other OCI-alternative lazy image distribution

Slacker: https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
l Uses NFS infra for the distribution of rootfs snapshots of containers
l Registries are used for sharing snapshot IDs among hosts

CernVM-FS: https://cvmfs.readthedocs.io/en/stable/
l FUSE Filesystem by CERN for sharing High Energy Physics (HEP) software on worldwide infrastructure
l Software stack can be mounted and lazily downloaded from CernVM-FS “repository” via HTTP
l Remote Snapshotter implementation for containerd

• https://github.com/cvmfs/containerd-remote-snapshotter
l On-going discussion towards integration with Podman

• https://github.com/containers/storage/issues/383

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://cvmfs.readthedocs.io/en/stable/
https://github.com/cvmfs/containerd-remote-snapshotter
https://github.com/containers/storage/issues/383

Other OCI-alternative lazy image distribution

Filegrain: https://github.com/akihirosuda/filegrain
l Proposed by Akihiro Suda (NTT)
l OCI compliant image format but uses continuity manifests as layers
l An image can be mounted and files are pulled lazily
l Each file is treated as a content-addressable blob => de-duplication in file granuality

On-going discussion towards “OCIv2”: https://hackmd.io/@cyphar/ociv2-brainstorm
l Proposed by Aleksa Sarai (SUSE)
l Brainstorm is in progress (2020/07)
l Lazy fetch support, mountable filesystem are also in the scope

crfs-plugin for fuse-overlayfs: https://github.com/giuseppe/crfs-plugin
l Proposed by Giuseppe Scrivano (Red Hat)
l Plugin of fuse-overlayfs for mounting stargz layer

https://github.com/akihirosuda/filegrain
https://hackmd.io/@cyphar/ociv2-brainstorm
https://github.com/giuseppe/crfs-plugin

Recap

l Pull is one of the time-consuming steps in the container lifecycle.

l Stargz Snapshotter, non-core subproject in containerd, is trying to solve it by lazy-pulling
images leveraging stargz image by Google.
• Standard compliant so can be pushed to and lazily pulled from standard registries
• Workload-based runtime optimization is also held with eStargz

l There are also other OCI-alternative image distribution strategies in container ecosystem

Feedbacks and suggestions are always welcome!
https://github.com/containerd/stargz-snapshotter

https://github.com/containerd/stargz-snapshotter

