
Jared Watts, Upbound
Lei Zhang, Alibaba

Standardizing Applications for the
Cloud at a Global Scale

How The Story Begin?

Me & team (platform builders) My users (developers, operators)

What’s Happened?

API & Primitives

code, app, CI/CD pipeline

Deployment Pod

ControllerHPA

NodeSidecar

NetworkPolicy CR/CRD

Levels of Abstraction

scaling
• auto scale +100

instances when
latency > 10%

rollout
• promote the canary

instance with step of
10% when it passes
baseline analysis

 HorizontalPodAutoscaler

 CustomMetricsServer

 Prometheus
Service Monitor

 Istio
Virtual Service

Deployment Ingress Service

User Interfaces

YAML

GUI CLI IaC

YAML

YAML

YAML

users’ expectation

what we provide

Let’s Build K8s App Platforms for Users!

Early 2019: Silos Created ...

I run stateful workloads! I run stateless apps!
I run stateless serverless

containers!

Users

Kubernetes

Cert
Manager

Ingress
Let’s

Encrypt

Flagger

Virtual
Service

Manual
Scaling

App CRD

HPA

Knative
Service

Cert

Canary

AutoScaler

AutoScaling

Route

Job
Deployment

•Fragmentation: ~11

PaaS/Serverless

•Silos: no interoperability,
reusability, or portability
•Close: many in-house wheels
due to in-house app crd

Platform Builders

Rethink

Can we build application platforms based on k8s, which are user
friendly, highly extensionable, in a standard approach?

Build abstractions! Leverage k8s
extensibility! How ???

Knative, OpenFaaS, or
DIY your own
abstraction!

Container, ksvc, VM,
auto scaling, manual
scaling, canary
blue-green, just name it!

Open Application Model (OAM)

Components Traits

Scaling Rollout Route Cert Traffic

AppConfig

K8s API resources, CRDs

Definitions

Docker ComposeDashboard
CL
I

DSLCLI

Deployment Function
Application
level
primitives

Capability
mgmt

DX/UI layer

Kubernetes

OAM defines app level primitives with standardization:

1. Components - what workload to run?

2. Traits - how to operate the workload?

3. AppConfig - bind trait with component

4. Definitions - register CRD as workload/trait

Components

Components

workload

apiVersion: core.oam.dev/v1alpha2
kind: Component
metadata:
 name: frontend
 annotations:
 description: Container workload
spec:
 workload:
 apiVersion: apps/v1

kind: Deployment
spec:
 template:
 spec:
 containers:
 - name: web
 image: 'php:latest'
 env:
 - name: OAM_TEXTURE
 value: texture.jpg
 ports:
 - containerPort: 8001
 name: http
 protocol: TCP

$ kubectl get deployment
NAME REVISION AGE
frontend-c8bb659c5 1 2d15h
frontend-a8eb65xfe 2 10m

$ kubectl get components
NAME WORKLOAD TYPE
frontend deployment.apps.k8s.io

Component is versionized template for your workload

workload-v1

workload-v2

Persona: App Developer

Workloads

Developers are free to define
workloads at any abstraction level,
including cloud resources.

apiVersion: core.oam.dev/v1alpha2
kind: Component
metadata:
 name: frontend
 annotations:
 description: Container
workload
spec:
 workload:
 apiVersion: apps/v1
 kind: Deployment
 spec:

 replicas: 3
 selector:
 matchLabels: app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.2
 ports:
 - containerPort: 80

apiVersion: core.oam.dev/v1alpha2
kind: Component
metadata:
 name: frontend
 annotations:
 description: Container workload
spec:
 workload:
 apiVersion: apps.alibaba-inc/v1
 kind: Containerized
 spec:

 image: nginx:1.14.2
 deploy:
 replicas: 3

Abstraction level: low Abstraction level: high

Traits and AppConfig

Component

Traits

Scaling

Rollout

Route

Cert

Traffic

AppConfig
workload

apiVersion: core.oam.dev/v1alpha2
kind: ApplicationConfiguration
metadata:
 name: helloworld
spec:
 components:
 # 1st component
 - componentName: frontend
 traits:
 - trait:
 apiVersion: autoscaling/v2beta2
 kind: HorizontalPodAutoscaler
 spec:
 minReplicas: 1
 maxReplicas: 10
 - trait:
 apiVersion: networking.alibaba-inc.com/v1
 kind: APIGateway
 spec:
 hostname: app.alibaba.com
 path: /
 service_port: 8001
 # 2nd component
 - componentName: redis

· Traits

·Declarative abstractions for operational capabilities

· AppConfig（Application Configuration）

·Bind given trait to component

Persona: App Operator

Definitions

apiVersion: core.oam.dev/v1alpha2
kind: TraitDefinition
metadata:
 name: virtualservices.networking.istio.io
 annotations:
 alias: traffic
spec:
 appliesTo:
 - *.apps.k8s.io
 conflictsWith:
 - traffic-split.alimesh.io
 definition: virtualservices.networking.istio.io

OAM K8s Plugin

Definitions

$ kubectl get traits
NAME DEFINITION APPLIES TO CONFLICTS WITH
traffic virtualservices.networking.istio.io *.apps.k8s.io traffic-split.alimesh.io
route route.core.oam.dev *.apps.k8s.io
cert cert.core.oam.dev *.apps.k8s.io

Register and discover k8s capabilities
(API resources) as workloads or traits

e.g.：Register Istio VirtualService as Traffic trait

Persona: Platform Builder/Infra Operator

In 2020: Build Standard Platforms

Common Traits

Function

Deployment
K8s

Operator

Virtual
Machine

Gateway

Route

Traffic

Alert

Monitor
Service
Binding

RolloutIngress

interoperability

Open Application
Model

Open Application
Model

Open Application
Model

Platform foo Platform bar Serverless baz

Common Workload Types

Manual Scaler K8s Operators

Kubernetes + OAM K8s Plugin

HPA Deployment scale-to-0 Function

Unified Model Layer

Platform Capability Pool

Open Application Model (OAM) is:
1. a building block to create standard app platforms

a. with developer centric primitives and your own level of abstraction
2. a standard and runtime agnostic app definition

a. enable global scale app distribution

Globally Distributed Apps

• A lot of real life applications don’t live in just 1 place
• App components and infrastructure can be spread across:

• Cloud providers
• Regions and zones
• Clusters

• Justifications
• Availability
• Resiliency
• Cost
• Unique services

Global Application Challenges

• Know who and what you’re building for - act with intention
• Understand the infrastructure needs of your app
• Tool explosion

• how many dashboards, GUIs, consoles do you want to live in?
• how many skills sets do you need to learn or hire for?

• Monitoring, management, policy, operations...

Control Plane

• A set of components that make management and
orchestration decisions for the entire solution

• Centralizes decision making into an authoritative place
• Single entry point API

• Kubernetes has a control plane
• schedules pods/resources across nodes

• Global control plane is similar - but bigger scope
• Provision infrastructure needed by app
• Deploy application components to clouds, regions, etc.

• CNCF sandbox project
• Open source control plane for applications and their

infrastructure
• Based on Kubernetes control plane

• Provision infrastructure declaratively using the K8s API
• Publish your own declarative infrastructure API without code

• self-service, on-demand, policy, config, best practices
• Run and deploy applications alongside infrastructure

• The OAM implementation for Kubernetes

• Standardized apps need infrastructure - databases, caches,
buckets, networking, etc.

• Control plane API - centralized place for provisioning &
consuming infrastructure

• Define the right API for your organization
• Abstractions to

• hide complexity & environment knowledge
• codify policy & best practices
• enable self-service by apps

Consuming Infrastructure

Consuming Infrastructure

DEMO

Building a global control plane API for
standardized apps and infrastructure

• OAM
• https://oam.dev/
• https://github.com/oam-dev/spec
• Gitter - https://gitter.im/oam-dev/
• Twitter - https://twitter.com/oam_dev
• Community meetings

• Crossplane
• https://crossplane.io/

• Try it out with the quick start docs!
• https://github.com/crossplane/crossplane
• Slack - https://slack.crossplane.io/
• Twitter - https://twitter.com/crossplane_io
• Community meetings and live streams

Get Involved!

https://oam.dev/
https://github.com/oam-dev/spec
https://gitter.im/oam-dev/
https://twitter.com/oam_dev
https://oam.dev/#community
https://crossplane.io/
https://github.com/crossplane/crossplane
https://slack.crossplane.io/
https://twitter.com/crossplane_io
https://github.com/crossplane/crossplane#get-involved
https://www.youtube.com/channel/UC19FgzMBMqBro361HbE46Fw

Questions?

https://crossplane.io/
https://oam.dev/

https://crossplane.io/
https://oam.dev/

Thank you!

https://crossplane.io/
https://oam.dev/

https://crossplane.io/
https://oam.dev/

