Scaling Prometheus

How We Got Some
Thanos Into Cortex

Marco Pracucci, Grafana Labs
Thor Hansen, HashiCorp

wr

KubeCon

X

CloudNativeCon
Europe 2020

Virtual

Horizontally Scalable Prometheus bl Eec %/’W

Europe 2020

Cortex is a distributed time series store CNCF Sandbox project,
built on Prometheus that is: applied to Incubation
e Horizontally scalable
e Highly Available
e Durable long-term storage (1+ year)
e Multi-tenant

e Global view across all your Prometheus

e Blazing fast queries

X Learn more at cortexmetrics.io

https://cortexmetrics.io

Horizontally Scalable Prometheus bl o NP

Europe 2020

Multiple Prometheus servers in HA pairs remote

writing to Cortex
. e Query back metrics from Cortex
/ 100% compatibility
g / Cortex exposes Prometheus API endpoints and

. Typical use case:
\ [J

internally runs PromQL engine

Cortex Microservices Architecture o Eec VA

Europe 2020

— Write path

distributor query-frontend alertmanager
(optional) ----> Read path
| ; T
_ e . ruler
Ingester querier (optional)

1 Prd
\ : //,
1 -
v 4
~—
N
|
||
2

Object Store Index Store
GCS, S3, BigTable,
Cassandra, ... DynamoDB,

Cassandra, ...

Cortex Single Binary Mode

KubeCon | CloudNativeCon
Europe 2020

8 R /yteal

cortex

w
Object Store

GCS, S3,
Cassandra, ...

“------

Index Store

BigTable,
DynamoDB,
Cassandra, ...

The single binary mode is the easiest way
to deploy a Cortex cluster:

e Single binary / config / deployment
e Highly-available

e Horizontally scalable

Internally, a single Cortex process runs all

microservices.

No compromises on scalability and performances

This architecture works and scales very well:
e Store 10s to 100s millions active series

e 99.5th percentile query latency < 2.5s

But, requiring both an object store and index store introduces extra

operational complexity and costs

Y

KubeCon

N

CloudNativeCon
Europe 2020

The rise of the blocks storage

|

’ [)
Can we remove the index store at all?
)

8 R /yteal

KubeCon | CloudNativeCon
Europe 2020

Marco Pracucci

Senior Software Engineer @ Grafana Labs

Cortex and Thanos maintainer

W @pracucci

CloudNativeCon
Europe 2020

Thor Hansen

Senior Software Engineer @ Hashicorp

Cortex contributor

3 @thordhansen

6 O

Cortex Blocks Storage e e
The idea:
distributor . .
e Store ingested samples in
per-tenant TSDB blocks
ingester))
Block Content e Ablock contains 2 hours of time
Blocks .
Tenant 1 - Mmetajson series
Blocks - chunks
Blocks | L Tenant 3 512MB files containing e Blocks are then uploaded to the
Toan 2 compressed samples
————— | index object store and queried back
W
Object Store

:(): Learn more: “TSDB Format”

GCS, S3, ...

https://github.com/prometheus/prometheus/blob/master/tsdb/docs/format/README.md

Cortex Blocks Storage

Hold on.

Isn't what E§ Thanos is already doing?

Cortex Blocks Storage

Instead of building it from scratch,

why not collaborate with Thanos?

Q Learn more: PromCon 2020 talk “Sharing is Caring”

https://promcon.io/2020-online/talks/sharing-is-caring--leveraging-open-source-to-improve-cortex---thanos/

o

Cortex Blocks Storage -4 E]ec Z/L/’W

Europe 2020

Feat/blocks #1695

bl Gl ol gouthamve merged 25 commits into cortexproject:master from thorfour:feat/blocks [Z] on 30 Oct 2019

Conversation 83 Commits 25 Checks 1 Files changed 227

thorfour commented on 24 Sep 2019 Contributor @ res

The motivation behind this PR was to be able to store larger sized objects into the S3 storage backend. It leverages a lot of
code from the thanos project to accomplish that.

This implements ingester storage and s3 storage using the tsdb blocks and thanos shipping to s3.
Each user has a tsdb opened up under their useriD, and a shipper that periodically scans that directory and uploads to s3.

Querier creates a block querier that syncs against s3 to perform the long-retention queries.

Cortex Blocks Storage

With an huge help from our friends

and 9 months ...

Cortex Blocks Storage Architecture bl Elec %/’ Ueal

Europe 2020

— Write path

distributor query-frontend aIerthanlager
(cptional) ----> Read path
| ; T
i SR ; ruler ,
Ingester querier (optional) 0 You can easily deploy
.) Cortex in single binary
l mode
e
' RS store-gateway
Object Store
(GCS, S3, ..)

T

compactor

Cortex Blocks Storage Architecture v Elec Virteal

Europe 2020

— Write path

distributor query-frontend alertmanager
(optional) ----+ Read path
ingester D gL Discover, load and query :'l) Q You can easily deploy
l blocks from the storage Ve Sl ey
mode
<>

- EREEEEEEEEEEEEEEEEEEEEE store-gateway

Compact small blocks

into a large block

compactor

Cortex Blocks Storage Architecture

KubeCon | CloudNativeCon
Europe 2020

8 R /yteal

Based on query-frontend aler’gor::ioanraml;':lger
Thanos Shipper , T
ingester oo qu Based on :'l)
l Thanos Bucket Store
e
- RS TEE TR P e TP R store-gateway
Based on

Thanos Compactor

compactor

— Write path
----+ Read path

Q You can easily deploy
Cortex in single binary
mode

The write path

8 R /yteal

KubeCon | CloudNativeCon
Europe 2020

1 TSDB block per tenant per ingester every 2h.

up{instance="A"}

up{instance="B"}

—_—

—_—

distributor-1

distributor-n

7

N

Each ingester cuts and ships a
block per tenant every 2h

tenant #1
block #1

ingester-1
tenant #2 \\\\\\\
block #1

~__
tenant #1
block #2
ingester-2 -

tenant #2
block #2 Object Store
(GCS, S3, ..)
tenant #1
block #n ////////
ingester-n
tenant #2

block #n

The write path: scalability issues - A= M@Z

Europe 2020

Issue: the number of blocks shipped by ingesters per day is:

Daily blocks = num tenants * num ingesters * (24 / 2)

Example: 1K tenants, 50 ingesters

Daily blocks = 1K tenants * 50 ingesters * (24 / 2) = 600K blocks / day
1 year retention = > 200M blocks

The write path: scalability issues o Elec Virtual

Europe 2020

Issue: given Cortex replicates series 3x across ingesters,

samples are duplicated 3x in the storage.

ingester-1 -%?EgE:;T up{instance="A"} [T1,V1] [T2,V2]

. # 1 . n n

ingester-2 ﬁﬁﬁiﬁ:_#z up{instance="A"} [T1,V1] [T2,V2]
tenant #1

ingester-3 block #3 up{instance="A"} [T1,V1] [T2,V2]

ingester-1

ingester-2

ingester-3

2 hours

tenant #1
block #1

tenant #1
block #2

tenant #1
block #3

The write path: scalability issues

2 hours

tenant #1
block #3

tenant #1
block #4

tenant #1
block #5

Solution: merge and deduplicate blocks with the compactor.

2 hours

tenant #1
block #6

tenant #1
block #7

tenant #1
block #8

Horizontal compaction

compacts adjacent blocks

reducing the total number of blocks and total index size

Y

KubeCon

N

CloudNativeCon
Europe 2020

Vertical compaction

merges and deduplicates overlapping blocks
reducing total chunks size by 3x

The write path: scalability issues - A= M@Z

Europe 2020

Solution: merge and deduplicate blocks with the compactor.

After compaction:

1 deduplicated block / day / tenant

Q Compactor can be horizontally scaled

6 8

The write path: scalability issues S] e S
Issue:
2 hours
if each tenant series are sharded tenant #1
block #1
i ingester-1
across all ingesters, cenant #2
we still have / ZLEElS i
1 block / ingester / tenant tenant #1
block #2
i istri r — ingester-2
shipped to the storage every 2h distributors g cenant #2
block #2 Object Store
(GCS, S3, ..)
tenant #1
block #n
ingester-n
tenant #2

block #n

The write path: scalability issues < B

KubeCon | CloudNativeCon
Europe 2020

Solution: shuffle sharding!

2 hours
Shard series of each tenant across a tenant #1
) block #1
different subset of ingesters g
tenant #2

/ block #1

o . tenant #2
distributors ~— ingester-2 block #2
Object Store
\ (GCS, S3, ..)
. tenant #1 /
Ingester-n Silealc S

Q Shuffle sharding support is experimental and under development

The write path: performances

Y

KubeCon

N

CloudNativeCon
Europe 2020

Virleat

Ingesters Latency and Samples/s

100 ms
80 ms
60 ms
40 ms
20 ms

Oms

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Q9th Percentile Latency

2.5M samples / sec ingested with a 99th latency ~5ms

18:00

4.5 Mil

4.0 Mil

3.5 Mil

3.0 Mil

2.5 Mil

2.0 Mil

1.5 Mil

20:00 22:00

Samples / sec

The read path

Ok. How do we query it back?

The read path

30M active series

il
200GB / day

(after compaction)
3
/0TB / year

£ 7)e]
The read path: query-frontend S|\ B. U W

Europe 2020

The query-frontend provides:

- Query execution parallelisation rate(metric[5m])
start: -3d, end: -2d

- Results caching

querier
rate(metric[5m]) e .
start: -3d, end: now 7 rate(metric[5m])
L start: -2d, end: -1d
[I .
"""" > query-frontend I_____. > querier
| N rate(metric[5m])
Y . start: -1d, end: now
querier
results
cache

Q Learn more: “How to Get Blazin' Fast PromQL”

https://grafana.com/blog/2019/09/19/how-to-get-blazin-fast-promql/

The read path: query-frontend e Elec Z W

Internally, a single query executed by the querier

will cover only 1 day (in most cases).

For this reason, we compact blocks (by default)
up to 1 day period. Results in a better parallelisation of

a large time range query.

6 O

The read path: querier and store-gateway S] e S

Virtueal

Europe 2020

The querier:
1. Keeps a in-memory map of all known blocks in the storage (ID, min/max timestamp)
2. Finds all block IDs containing samples within the query start/end time

3. Query most recent samples from ingesters and blocks via the store-gateways

R ingester

rate(metric[5m])

start: X, end: Y g querier --------- = store-gateway s

w
Object Store
(GCS, S3, ..)

6 O

The read path: querier and store-gateway S] e S

Europe 2020

The store-gateway:
e Blocks are sharded and replicated across store-gateways
e For each block belonging to the shard, a store-gateway loads the index-header (small index subset)

e Querier queries blocks through the minimum set of store-gateways holding required blocks

store-gateway-1 -~

querier et block #1 block #2

4
4
4
\
AY
\
\
¥

Ta store-gateway-2 g Object Store
(GCS, S3, ..)
block #3

‘%‘ 1)e]
The read path: querier and store-gateway S8 MW

Europe 2020

Inside the store-gateway:
e Index-header is fully downloaded

e Fullindex or chunks are never entirely downloaded (but lazily fetched via GET byte-range requests)

store-gateway

matchers: {__name__="metric”"} -----» local lookup of symbols and - remote lookup of postings,
start: X postings offsets table series and chunks

end: Y (through index-header) (via GET byte-range
blocks: 1,2 requests)

The read path: querier and store-gateway S8 ﬂ@f

Europe 2020

Three layers of caching:

- Metadata querier
Used to discover blocks in the storage ! metadata
- Index v cache
Lookup postings and series
_ Chunks store-gateway -
- N chunks
Fetch chunks containing samples 5 . cache
(16KB aligned sub-object caching) ;
~— R
' index
Object Store cache
(GCS, S3, ..)

Q Caching is optional, but recommended in production

The read path: performances e Eec VW

Europe 2020

Latency 99th
5s
45
3s
2s
1s
Ons
20:00 00:00 04:00 08:00 12:00 16:00
blocks chunks

Two Cortex clusters ingesting same series (10M active series)
Queries mirrored to both clusters via query-tee

Blocks storage performances comparable with chunks storage

https://cortexmetrics.io/docs/operations/query-tee/

The future 8| B lVital

KubeCon | CloudNativeCon
Europe 2020

Coming soon in the Cortex blocks storage!

- Even faster queries
- Fully load indexes for last few days?
- Write-through cache?
- 2nd dimension to shard blocks?

- Productionise shuffle sharding

- Deletions (lead by Thanos community)

£ M = O 2 Al

e Thanks!

V. QA

Please also check out the CNCF schedule
for Cortex rooms / booth

a0 X
N (][] &) T L b

