
Scaling Prometheus
How We Got Some
Thanos Into Cortex

Marco Pracucci, Grafana Labs
Thor Hansen, HashiCorp

Horizontally Scalable Prometheus

Cortex is a distributed time series store
built on Prometheus that is:

● Horizontally scalable

● Highly Available

● Durable long-term storage (1+ year)

● Multi-tenant

● Global view across all your Prometheus

● Blazing fast queries

 Learn more at cortexmetrics.io

CNCF Sandbox project,
applied to Incubation

https://cortexmetrics.io

Horizontally Scalable Prometheus

Typical use case:

● Multiple Prometheus servers in HA pairs remote

writing to Cortex

● Query back metrics from Cortex

100% compatibility

Cortex exposes Prometheus API endpoints and

internally runs PromQL engine

Cortex Microservices Architecture

distributor

ingester querier

query-frontend

Index Store

BigTable,
DynamoDB,

Cassandra, …

alertmanager
(optional)

ruler
(optional)

Write path

Read path

Object Store

GCS, S3,
Cassandra, …

The single binary mode is the easiest way
to deploy a Cortex cluster:

● Single binary / config / deployment

● Highly-available

● Horizontally scalable

Internally, a single Cortex process runs all

microservices.

cortex

Cortex Single Binary Mode

cortex

Index Store

BigTable,
DynamoDB,

Cassandra, …

Object Store

GCS, S3,
Cassandra, …

This architecture works and scales very well:

● Store 10s to 100s millions active series

● 99.5th percentile query latency < 2.5s

No compromises on scalability and performances

But, requiring both an object store and index store introduces extra

operational complexity and costs

Can we remove the index store at all?

The rise of the blocks storage

“ “

Hello!

Marco Pracucci
Senior Software Engineer @ Grafana Labs

Cortex and Thanos maintainer

@pracucci

Hello!

Thor Hansen
Senior Software Engineer @ Hashicorp

Cortex contributor

@thor4hansen

The idea:

● Store ingested samples in

per-tenant TSDB blocks

● A block contains 2 hours of time

series

● Blocks are then uploaded to the

object store and queried back

Cortex Blocks Storage

Object Store

GCS, S3, …

distributor

Block Content

- meta.json
- chunks

512MB files containing
compressed samples

- index

ingester

 Learn more: “TSDB Format”

Blocks
Tenant 1

Blocks
Tenant 2

Blocks
Tenant 3

https://github.com/prometheus/prometheus/blob/master/tsdb/docs/format/README.md

Cortex Blocks Storage

Hold on.

Isn’t what Thanos is already doing?

Instead of building it from scratch,

why not collaborate with Thanos?

Cortex Blocks Storage

 Learn more: PromCon 2020 talk “Sharing is Caring”

https://promcon.io/2020-online/talks/sharing-is-caring--leveraging-open-source-to-improve-cortex---thanos/

Cortex Blocks Storage

Cortex Blocks Storage

With an huge help from our friends

and 9 months …

Cortex Blocks Storage Architecture

You can easily deploy
Cortex in single binary
mode

distributor

ingester querier

query-frontend alertmanager
(optional)

ruler
(optional)

Write path

Read path

store-gateway

Object Store
(GCS, S3, …)

compactor

Cortex Blocks Storage Architecture

distributor

ingester querier

query-frontend alertmanager
(optional)

ruler
(optional)

Write path

Read path

store-gateway

Object Store
(GCS, S3, …)

compactor

Discover, load and query

blocks from the storage

Compact small blocks

into a large block

You can easily deploy
Cortex in single binary
mode

Cortex Blocks Storage Architecture

distributor

ingester querier

query-frontend alertmanager
(optional)

ruler
(optional)

Write path

Read path

store-gateway

Object Store
(GCS, S3, …)

compactor

Based on

Thanos Bucket Store

Based on

Thanos Compactor

Based on

Thanos Shipper

You can easily deploy
Cortex in single binary
mode

The write path

1 TSDB block per tenant per ingester every 2h.

ingester-1

ingester-2

ingester-n

distributor-1

distributor-n

Each ingester cuts and ships a
block per tenant every 2h

Object Store
(GCS, S3, …)

up{instance=”A”}

up{instance=”B”}

tenant #1
block #1

tenant #2
block #1

tenant #1
block #2

tenant #2
block #2

tenant #1
block #n

tenant #2
block #n

The write path: scalability issues

Issue: the number of blocks shipped by ingesters per day is:

Daily blocks = num tenants * num ingesters * (24 / 2)

Example: 1K tenants, 50 ingesters

Daily blocks = 1K tenants * 50 ingesters * (24 / 2) = 600K blocks / day

1 year retention = > 200M blocks

The write path: scalability issues

Issue: given Cortex replicates series 3x across ingesters,

samples are duplicated 3x in the storage.

ingester-1

ingester-2

ingester-3

tenant #1
block #1

tenant #1
block #2

tenant #1
block #3

up{instance=”A”} [T1,V1] [T2,V2]

up{instance=”A”} [T1,V1] [T2,V2]

up{instance=”A”} [T1,V1] [T2,V2]

The write path: scalability issues

Solution: merge and deduplicate blocks with the compactor.

ingester-1

ingester-2

ingester-3

tenant #1
block #1

tenant #1
block #2

tenant #1
block #3

tenant #1
block #3

tenant #1
block #4

tenant #1
block #5

tenant #1
block #6

tenant #1
block #7

tenant #1
block #8

2 hours 2 hours 2 hours

Horizontal compaction

compacts adjacent blocks
reducing the total number of blocks and total index size

Vertical compaction

merges and deduplicates overlapping blocks
reducing total chunks size by 3x

The write path: scalability issues

Solution: merge and deduplicate blocks with the compactor.

After compaction:

1 deduplicated block / day / tenant

 Compactor can be horizontally scaled

Issue:

if each tenant series are sharded

across all ingesters,

we still have

1 block / ingester / tenant

shipped to the storage every 2h

The write path: scalability issues

ingester-1

ingester-2

ingester-n

distributors
Object Store
(GCS, S3, …)

tenant #1
block #1

tenant #2
block #1

tenant #1
block #2

tenant #2
block #2

tenant #1
block #n

tenant #2
block #n

2 hours

Solution: shuffle sharding!

Shard series of each tenant across a

different subset of ingesters

The write path: scalability issues

ingester-1

ingester-2

ingester-n

distributors
Object Store
(GCS, S3, …)

tenant #1
block #1

tenant #2
block #1

tenant #2
block #2

tenant #1
block #n

2 hours

 Shuffle sharding support is experimental and under development

2.5M samples / sec ingested with a 99th latency ~5ms

The write path: performances

The read path

Ok. How do we query it back?

The read path

30M active series
⬇

200GB / day
(after compaction)

⬇

70TB / year

The read path: query-frontend

 Learn more: “How to Get Blazin' Fast PromQL”

querier

query-frontend

rate(metric[5m])
start: -3d, end: now

querier

querier

rate(metric[5m])
start: -3d, end: -2d

rate(metric[5m])
start: -2d, end: -1d

rate(metric[5m])
start: -1d, end: now

results
cache

The query-frontend provides:

- Query execution parallelisation

- Results caching

https://grafana.com/blog/2019/09/19/how-to-get-blazin-fast-promql/

Internally, a single query executed by the querier

will cover only 1 day (in most cases).

For this reason, we compact blocks (by default)

up to 1 day period. Results in a better parallelisation of

a large time range query.

The read path: query-frontend

The read path: querier and store-gateway

rate(metric[5m])

start: X, end: Y store-gatewayquerier

Object Store
(GCS, S3, …)

ingester

The querier:

1. Keeps a in-memory map of all known blocks in the storage (ID, min/max timestamp)

2. Finds all block IDs containing samples within the query start/end time

3. Query most recent samples from ingesters and blocks via the store-gateways

The store-gateway:

● Blocks are sharded and replicated across store-gateways

● For each block belonging to the shard, a store-gateway loads the index-header (small index subset)

● Querier queries blocks through the minimum set of store-gateways holding required blocks

The read path: querier and store-gateway

store-gateway-1

querier

Object Store
(GCS, S3, …)

block #1 block #2

store-gateway-2

block #3

matchers: {__name__=”metric”}

start: X

end: Y

blocks: 1,2

Inside the store-gateway:

● Index-header is fully downloaded

● Full index or chunks are never entirely downloaded (but lazily fetched via GET byte-range requests)

The read path: querier and store-gateway

store-gateway

local lookup of symbols and

postings offsets table

(through index-header)

remote lookup of postings,

series and chunks

(via GET byte-range

requests)

The read path: querier and store-gateway

 Caching is optional, but recommended in production

Three layers of caching:

- Metadata

Used to discover blocks in the storage

- Index

Lookup postings and series

- Chunks

Fetch chunks containing samples

(16KB aligned sub-object caching)

querier

store-gateway

Object Store
(GCS, S3, …)

index
cache

chunks
cache

metadata
cache

The read path: performances

Two Cortex clusters ingesting same series (10M active series)

Queries mirrored to both clusters via query-tee

Blocks storage performances comparable with chunks storage

https://cortexmetrics.io/docs/operations/query-tee/

Coming soon in the Cortex blocks storage!

- Even faster queries

- Fully load indexes for last few days?

- Write-through cache?

- 2nd dimension to shard blocks?

- Productionise shuffle sharding

- Deletions (lead by Thanos community)

The future

Thanks!
QA

Please also check out the CNCF schedule
for Cortex rooms / booth

