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Problem Statement
Service networking bottlenecks in Kubernetes



Current pain points

1. Limit for # of endpoints in a service 

2. Performance degradation in large clusters



Existing Endpoints API



Endpoints per service limit

# of backend pods: P
Size of Endpoints object: O(P)



Max size of etcd object

1.5 MB      ≈   O(5000) endpoints



Max size of etcd object

if endpoints object > 1.5 MB: 

 💥
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Performance Degradation

GET /api/v1/endpoints?watch=true&...
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# of nodes: N
# of watchers: N
# of object copies per update: N

Performance Degradation



Size of Endpoints object: O(P)
# of backend pods: P

# watchers: N

total bytes transmitted per update: O(NP)

Performance Degradation



Estimation

Size of Endpoints object: 1 MB
# of nodes: 5000

total bytes transmitted per update: 
5000 X 1 MB = 5GB

DVD?



Estimation

total bytes transmitted per update: 5GB

rolling update?

~5000 X 5 GB = 25TB !



User Expectations

● 10k+ endpoints/service

● High churn within a service

Just Works!

● Large Cluster



EndpointSlice API intro
Scalable and extensible 



Goals

● Support tens of thousands of backend endpoints in a 
cluster with thousands of nodes

● Enable future extensions: 
○ Dualstack
○ App Protocol 
○ FQDN 
○ Topological Aware Service
○ Dynamic endpoints subsetting
○ Multi-cluster Service discovery 
...



High-level idea
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Endpoint Update
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Endpoint Update
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Endpoint Update
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How it works
The key components that make EndpointSlices work



Key Components

● EndpointSlice controller: Watches Services and Pods and 
creates or updates EndpointSlices

● EndpointSliceMirroring controller: Watches custom 
Endpoints and mirrors them to EndpointSlices

● Kube-Proxy: Watches Services and EndpointSlices and 
updates iptables or IPVS proxy rules



EndpointSlice Controller Goals

● Reduce EndpointSlice churn

○ Every node will watch EndpointSlices - updates are 
expensive

● Limit RPS to API Server

○ EndpointSlices that are too small will result in too many 
resources being updated 

○ EndpointSlices that are too big will result in a DVD’s worth 
of data getting sent across the cluster for even tiny changes



Example

epslice-1
70 endpoints

epslice-2
80 endpoints

New endpoints to add: 50



Example

epslice-1
70 endpoints

epslice-2
80 endpoints

Although they could all fit if we updated epslice-1 and epslice-2, 
we prefer a single create over multiple updates. 

epslice-3
50 endpoints



Profiling Kubernetes
Finding bottlenecks in the codebase



The Problem

● kube-proxy was slower when using EndpointSlices than 
Endpoints

● The implementation was more complex

● EndpointSlice implementations needed to be faster

● Profiling kube-proxy with pprof was very helpful





Results

endpoint.IP() was taking 
43% of CPU time
● Method was used for sorting and 

diffing

● It didn’t just return a string, it 
used netutil to parse an IP out of 
an IP:Port string



Results

handleUpdateEndpointSlice()
was using 55% of CPU time
● We were calculating new EndpointsMap 

data structures every time an 
EndpointSlice was updated.

● This was only used when proxy rules 
were synced, much less frequently



Results

detectStaleConnections()
was using 88% of CPU time
● Necessary to cleanup stale UDP 

connections

● Was running for all connections

● Restructured this so it only ran for UDP 
connections



Scaling to 10k endpoints

Kube-Proxy 
CPU Usage



Scaling to 10k endpoints

Implementation CPU time % of baseline

Endpoints 1.16 (baseline) 116.7 100%

Endpoints 1.17 22.1 18.9%

EndpointSlice 1.16 312.5 260%

EndpointSlice 1.17 6.4 5.4%



Performance at 100k
How big is too big?



Caveats

● These results are not scientific, we just wanted to know what would 
happen at this scale

● This is not an endorsement of running a Service with 100k endpoints 
in production

● We did nothing to tune the cluster for better performance at scale, it 
was running with all the standard kubetest settings

● With appropriate efforts to tune the master components, results would 
likely have been significantly better



Setup

● Used Kubetest with most defaults used for e2e test 
clusters

● 1.19 alpha prerelease (v1.19.0-alpha.2.2611+a1a2f8c5f854e2)

HEAPSTER_MACHINE_TYPE=n1-standard-32 \
kubetest --up \
--provider=gce \
--gcp-nodes=4001 \
--gcp-node-size=n1-standard-1 \
--gcp-zone=us-east1-a



Setup

● 4002 Nodes

● 1 Master

● 1 for Heapster

● 4000 Nodes for everything else



Setup

● 10 deployments * 10k pods each = 100k pods

● Divided into chunks so kubectl get pods won’t timeout



Setup

● 1 NodePort Service targeting Pods for all deployments



Setup

● Endpoints hit default etcd object size limit at around 10k Pods

○ Failed to update endpoint default/scale-100k: 
Request entity too large: limit is 3145728



Setup

● 1006 EndpointSlices to store 100,000 endpoints

● Controller minimizes updates and will always create a new 
EndpointSlice instead of updating multiple EndpointSlices



So iptables?

● >400k total lines, >100k probabilities

● syncProxyRules: ~16s, iptables save and restore: ~9s

● Requests went to 5983 pods



Results: iptables

● 50k requests with freehan/hey

● Avg 0.8831s response time

● Requests went to 12,700 pods



Results: IPVS

● 50k requests with freehan/hey

● Avg 1.7456s response time

● Requests went to 17,138 pods



More than 100k

● It all continues to work with 120k Pods

● 1204 total EndpointSlices



Errors at Scale

API Server timeouts when setting up new watches
apiserver panic'd on GET 
/apis/discovery.k8s.io/v1beta1/endpointslices?labelSelector=%21service.kubernetes.io%2Fheadless%2C%21service.kub
ernetes.io%2Fservice-proxy-name&resourceVersion=8653734
http2: panic serving 34.75.50.56:47304: killing connection/stream because serving request timed out and 
response had been started

EndpointSlice update fails - informer cache is out of date
"Event occurred" object="default/scale-100k" kind="Service" apiVersion="v1" type="Warning" 
reason="FailedToUpdateEndpointSlices" message="Error updating Endpoint Slices for Service default/scale-100k: 
[Error updating scale-100k-6kzx6 EndpointSlice for Service default/scale-100k: Operation cannot be fulfilled on 
endpointslices.discovery.k8s.io \"scale-100k-6kzx6\": the object has been modified; please apply your changes 
to the latest version and try again

Endpoints controller kept running into etcd object size limit - Endpoints will be truncated in future
Failed to update endpoint default/scale-100k: Request entity too large: limit is 3145728



Modes Compared

ipvs iptables

100k 120k 100k 120k

Avg response time (s) 1.7456 1.7468 0.8831 1.8891

Endpoint distribution 17,138 18,184 12,700 20,189

Avg update time (s) ~5 ~5 ~25 ~29

These results are not scientific. They represent individual runs from a single node in a cluster with 
prerelease software. A variety of additional factors could affect these values.



What’s Next?
The features EndpointSlices will enable



● Automatic Topology Aware Routing Alpha

● EndpointSlice Subsetting for Kube-Proxy Alpha

● MultiCluster Services Alpha

● Significant dual stack updates

● EndpointSlice Windows Kube-Proxy Beta

Goals for Kubernetes 1.20



Topology Aware Routing

● EndpointSlices store topology information (zone, region) for 
each endpoint

● Kube-Proxy can be updated to prefer endpoints that are in the 
same zone or region

● Potential for faster routing and significant cost savings



EndpointSlice Subsetting

● Controller can start to group EndpointSlices by unique topology 
keys such as zone and region

● Kube-Proxy can choose to select the subset of EndpointSlices 
that represent closest Endpoints

● Potential for huge performance improvements:

○ In a 3-zone cluster nearly 3x less endpoints for kube-proxy 
to watch and process

○ Significant decrease for API server load in large clusters



Conclusion

● Even if you don’t want to run a 100k endpoint Service, these 
performance improvements will be noticeable at all levels

● The upper limits of Service size are dramatically higher now

● EndpointSlices don't solve all the bottlenecks

● New features like topology aware routing and subsetting will 
result in significant scalability improvements




