
Rob Scott, Google
Minhan Xia, Google

Scaling Kubernetes
Networking Beyond
100,000 Endpoints

Outline

● Problem Statement

● EndpointSlice API intro

● How it works

● Profiling Kubernetes

● Performance at 100k

● What’s next

Problem Statement
Service networking bottlenecks in Kubernetes

Current pain points

1. Limit for # of endpoints in a service

2. Performance degradation in large clusters

Existing Endpoints API

Endpoints per service limit

of backend pods: P
Size of Endpoints object: O(P)

Max size of etcd object

1.5 MB ≈ O(5000) endpoints

Max size of etcd object

if endpoints object > 1.5 MB:

 💥

Service Control Flow

pod
schedule

d

Kubelet Endpoints Controller

pod
ready

Kube-proxy

endpoin
t ready

pod
created

service
created

endpoint
programmed

⌧

🐧

Performance Degradation

GET /api/v1/endpoints?watch=true&...

API Server

Kube-Proxy

Kube-Proxy

Kube-Proxy

Kube-Proxy

of nodes: N
of watchers: N
of object copies per update: N

Performance Degradation

Size of Endpoints object: O(P)
of backend pods: P

watchers: N

total bytes transmitted per update: O(NP)

Performance Degradation

Estimation

Size of Endpoints object: 1 MB
of nodes: 5000

total bytes transmitted per update:
5000 X 1 MB = 5GB

DVD?

Estimation

total bytes transmitted per update: 5GB

rolling update?

~5000 X 5 GB = 25TB !

User Expectations

● 10k+ endpoints/service

● High churn within a service

Just Works!

● Large Cluster

EndpointSlice API intro
Scalable and extensible

Goals

● Support tens of thousands of backend endpoints in a
cluster with thousands of nodes

● Enable future extensions:
○ Dualstack
○ App Protocol
○ FQDN
○ Topological Aware Service
○ Dynamic endpoints subsetting
○ Multi-cluster Service discovery
...

High-level idea

Endpoints

EndpointSlice EndpointSlice EndpointSlice

Pod Pod Pod Pod Pod Pod Pod Pod Pod

Pod Pod Pod Pod Pod Pod Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Endpoint Update

EndpointSlice

Kube-Proxy

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

EndpointSlice

EndpointSlice

Kube-Proxy

Kube-Proxy

Kube-Proxy

Endpoint Update

EndpointSlice

Kube-Proxy

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

EndpointSlice

EndpointSlice

Kube-Proxy

Kube-Proxy

Kube-Proxy

Endpoint Update

EndpointSlice

Kube-Proxy

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

Pod Pod Pod

EndpointSlice

EndpointSlice

Kube-Proxy

Kube-Proxy

Kube-Proxy

How it works
The key components that make EndpointSlices work

Key Components

● EndpointSlice controller: Watches Services and Pods and
creates or updates EndpointSlices

● EndpointSliceMirroring controller: Watches custom
Endpoints and mirrors them to EndpointSlices

● Kube-Proxy: Watches Services and EndpointSlices and
updates iptables or IPVS proxy rules

EndpointSlice Controller Goals

● Reduce EndpointSlice churn

○ Every node will watch EndpointSlices - updates are
expensive

● Limit RPS to API Server

○ EndpointSlices that are too small will result in too many
resources being updated

○ EndpointSlices that are too big will result in a DVD’s worth
of data getting sent across the cluster for even tiny changes

Example

epslice-1
70 endpoints

epslice-2
80 endpoints

New endpoints to add: 50

Example

epslice-1
70 endpoints

epslice-2
80 endpoints

Although they could all fit if we updated epslice-1 and epslice-2,
we prefer a single create over multiple updates.

epslice-3
50 endpoints

Profiling Kubernetes
Finding bottlenecks in the codebase

The Problem

● kube-proxy was slower when using EndpointSlices than
Endpoints

● The implementation was more complex

● EndpointSlice implementations needed to be faster

● Profiling kube-proxy with pprof was very helpful

Results

endpoint.IP() was taking
43% of CPU time
● Method was used for sorting and

diffing

● It didn’t just return a string, it
used netutil to parse an IP out of
an IP:Port string

Results

handleUpdateEndpointSlice()
was using 55% of CPU time
● We were calculating new EndpointsMap

data structures every time an
EndpointSlice was updated.

● This was only used when proxy rules
were synced, much less frequently

Results

detectStaleConnections()
was using 88% of CPU time
● Necessary to cleanup stale UDP

connections

● Was running for all connections

● Restructured this so it only ran for UDP
connections

Scaling to 10k endpoints

Kube-Proxy
CPU Usage

Scaling to 10k endpoints

Implementation CPU time % of baseline

Endpoints 1.16 (baseline) 116.7 100%

Endpoints 1.17 22.1 18.9%

EndpointSlice 1.16 312.5 260%

EndpointSlice 1.17 6.4 5.4%

Performance at 100k
How big is too big?

Caveats

● These results are not scientific, we just wanted to know what would
happen at this scale

● This is not an endorsement of running a Service with 100k endpoints
in production

● We did nothing to tune the cluster for better performance at scale, it
was running with all the standard kubetest settings

● With appropriate efforts to tune the master components, results would
likely have been significantly better

Setup

● Used Kubetest with most defaults used for e2e test
clusters

● 1.19 alpha prerelease (v1.19.0-alpha.2.2611+a1a2f8c5f854e2)

HEAPSTER_MACHINE_TYPE=n1-standard-32 \
kubetest --up \
--provider=gce \
--gcp-nodes=4001 \
--gcp-node-size=n1-standard-1 \
--gcp-zone=us-east1-a

Setup

● 4002 Nodes

● 1 Master

● 1 for Heapster

● 4000 Nodes for everything else

Setup

● 10 deployments * 10k pods each = 100k pods

● Divided into chunks so kubectl get pods won’t timeout

Setup

● 1 NodePort Service targeting Pods for all deployments

Setup

● Endpoints hit default etcd object size limit at around 10k Pods

○ Failed to update endpoint default/scale-100k:
Request entity too large: limit is 3145728

Setup

● 1006 EndpointSlices to store 100,000 endpoints

● Controller minimizes updates and will always create a new
EndpointSlice instead of updating multiple EndpointSlices

So iptables?

● >400k total lines, >100k probabilities

● syncProxyRules: ~16s, iptables save and restore: ~9s

● Requests went to 5983 pods

Results: iptables

● 50k requests with freehan/hey

● Avg 0.8831s response time

● Requests went to 12,700 pods

Results: IPVS

● 50k requests with freehan/hey

● Avg 1.7456s response time

● Requests went to 17,138 pods

More than 100k

● It all continues to work with 120k Pods

● 1204 total EndpointSlices

Errors at Scale

API Server timeouts when setting up new watches
apiserver panic'd on GET
/apis/discovery.k8s.io/v1beta1/endpointslices?labelSelector=%21service.kubernetes.io%2Fheadless%2C%21service.kub
ernetes.io%2Fservice-proxy-name&resourceVersion=8653734
http2: panic serving 34.75.50.56:47304: killing connection/stream because serving request timed out and
response had been started

EndpointSlice update fails - informer cache is out of date
"Event occurred" object="default/scale-100k" kind="Service" apiVersion="v1" type="Warning"
reason="FailedToUpdateEndpointSlices" message="Error updating Endpoint Slices for Service default/scale-100k:
[Error updating scale-100k-6kzx6 EndpointSlice for Service default/scale-100k: Operation cannot be fulfilled on
endpointslices.discovery.k8s.io \"scale-100k-6kzx6\": the object has been modified; please apply your changes
to the latest version and try again

Endpoints controller kept running into etcd object size limit - Endpoints will be truncated in future
Failed to update endpoint default/scale-100k: Request entity too large: limit is 3145728

Modes Compared

ipvs iptables

100k 120k 100k 120k

Avg response time (s) 1.7456 1.7468 0.8831 1.8891

Endpoint distribution 17,138 18,184 12,700 20,189

Avg update time (s) ~5 ~5 ~25 ~29

These results are not scientific. They represent individual runs from a single node in a cluster with
prerelease software. A variety of additional factors could affect these values.

What’s Next?
The features EndpointSlices will enable

● Automatic Topology Aware Routing Alpha

● EndpointSlice Subsetting for Kube-Proxy Alpha

● MultiCluster Services Alpha

● Significant dual stack updates

● EndpointSlice Windows Kube-Proxy Beta

Goals for Kubernetes 1.20

Topology Aware Routing

● EndpointSlices store topology information (zone, region) for
each endpoint

● Kube-Proxy can be updated to prefer endpoints that are in the
same zone or region

● Potential for faster routing and significant cost savings

EndpointSlice Subsetting

● Controller can start to group EndpointSlices by unique topology
keys such as zone and region

● Kube-Proxy can choose to select the subset of EndpointSlices
that represent closest Endpoints

● Potential for huge performance improvements:

○ In a 3-zone cluster nearly 3x less endpoints for kube-proxy
to watch and process

○ Significant decrease for API server load in large clusters

Conclusion

● Even if you don’t want to run a 100k endpoint Service, these
performance improvements will be noticeable at all levels

● The upper limits of Service size are dramatically higher now

● EndpointSlices don't solve all the bottlenecks

● New features like topology aware routing and subsetting will
result in significant scalability improvements

