
Travis Nielsen, Red Hat
Sébastien Han, Red Hat
20 Aug 2020

ROOK-CEPH DEEP DIVE



Project Status

● CNCF Incubating project since September 2018
● CNCF Graduation voting is in progress

○ Hopefully completed by now!
● Latest release: v1.4



What is Rook?

● Open Source
● Storage Operators for Kubernetes
● Automates Management of Ceph

○ Deployment
○ Configuration
○ Upgrading



What is Ceph?

● Open Source
● Distributed storage software-defined solution

○ Block
○ Shared File System
○ Object Storage (S3 compliant)



ARCHITECTURE



Architectural Layers

● Rook: 
○ The operator owns the management of Ceph

● Ceph-CSI: 
○ CSI driver dynamically provisions and connects client pods to 

the storage
● Ceph: 

○ Data layer 



Layer 1: Rook Management



Layer 2: CSI Provisioning



Layer 3: Ceph Data Path



GETTING STARTED



Installing Ceph is easy!

● Create the authorization (RBAC) settings
○ kubectl create -f common.yaml

● Create the Operator
○ kubectl create -f operator.yaml

● Create the CephCluster CR
○ kubectl create -f cluster.yaml



Application Storage

● Admin creates a storage class
● Create a PVC 
● Create your application pod



Storage Configuration 
● Environments: Bare metal or Cloud 
● Provision storage from a storage class (PV)
● Device management (non-PV):

a. Use all available raw devices or partitions
b. List all nodes and devices by name
c. Ceph Drive Groups 



Cluster Topology
● Failure domains: High availability and durability

○ Ceph Monitors should be spread across zones
○ OSD CRUSH hierarchy will be automatically populated based on 

node labels
○ Spread OSDs evenly with pod topology constraints

● Rook can be deployed on specific nodes if desired
○ Node affinity, taints/tolerations, etc



Ceph in a Cloud Environment
● Consistent Storage Platform wherever K8s is deployed
● Overcome shortcomings of the cloud provider’s storage

○ Storage across AZs
○ Slow failover times (seconds instead of minutes)
○ Limitations of number of PVs per node (many more than ~30)
○ Perf characteristics of large volumes

● Ceph Monitors and OSDs run on PVCs
○ No need for direct access to local devices



KEY FEATURES



Upgrading is automated!

● To upgrade Rook, update the Operator version
○ Simply update the Operator version
○ Minor releases require steps as documented in the upgrade guide 

image: rook/ceph:v1.4.2

● To upgrade Ceph, simply update the CephCluster CR version
○ Rook handles intricacies of Ceph version upgrades

image: ceph/ceph:v15.2.6



Ceph CSI Driver
● Ceph CSI 3.0 Driver is deployed by default with v1.4

○ Dynamic provisioning of RWO/RWX/ROX (RBD)
○ Dynamic provisioning of RWO/RWX/ROX (CephFS)

● Snapshots and clones are beta
○ Not backward compatible with alpha 

● Flex driver is still available, but support is limited



External Cluster Connection
Connect to a Ceph cluster that you’ve 
configured separately from Kubernetes

● Inject the following in Kubernetes:
○ Monitors list
○ Keyring
○ Cluster FSID

● Create the cluster-external CR



Object Bucket Provisioning

● Define a Storage Class for object storage
● Create an “object bucket claim” 

○ The operator creates a bucket when requested
○ Similar pattern to a Persistent Volume Claim (PVC)



ROOK v1.4 FEATURES
Aug 2020



Multus Networking
● Multus is supported - not experimental anymore
● “Whereabouts” IPAM is preferred
● Increased security, only expose desired network interfaces
● Separate internal Ceph traffic from public client traffic
● Lack of Services support



Object Multisite Replication (Experimental)
● Geographically replicate objects across Rook-Ceph clusters

○ Region
○ Datacenter

● New CRDs:
○ Realm
○ Zone group
○ Zone



Admission Controller
● Validates the creation of Custom Resources
● Reject incorrect CR before the Operator reconciles
● Not enabled by default (yet)



Toolbox Job
● Execute Ceph commands in a Kubernetes Job
● Examples:

○ Periodically collect information in the cluster
○ Remove failed OSDs from the cluster

● No manual intervention



Improved external mode
● More stable
● Gather External cluster metrics and put them in Prometheus
● External CephObjectStore:

○ use external gateways and integrate them as Kubernetes Service



And much more!
● Encryption for OSD on PVC
● Health checks and livenessprobe configuration
● All Rook CRDs have been converted to use the controller-runtime library
● Cluster cleanup during uninstall enhancements (sanitize drives)
● Ceph Drive Groups can be specified in the CephCluster CR



Thanks!
https://rook.io/

tnielsen@redhat.com
seb@redhat.com

https://rook.io/




Storage: All Devices
● Use all available devices that 

Rook discovers on nodes in 
the cluster

● Filter with a node selector 
where the nodes have a label 
role=storage-node 



Storage: Device Sets
1. Provision storage from a storage class

2. Native K8s solution: No need for direct 
access to hardware

3. OSDs can failover across nodes
4. Scenarios:

a. Cloud environments
b. Local PVs



Storage: Ceph Drive Groups
● Use hdds for data and ssds for 

metadata

● Use max of 6 devices between 
10-50TB with separate db and wal 
devices



Storage: Named Nodes and Devices
● List all nodes and devices by 

name
● Scenarios:

○ Absolute control rather 
than relying on discovery 


