

KubeCon

CloudNativeCon

Europe 2020

ROOK-CEPH DEEP DIVE

Travis Nielsen, Red Hat Sébastien Han, Red Hat ^{20 Aug 2020}

Project Status

- CNCF Incubating project since September 2018
- CNCF Graduation voting is in progress
 - Hopefully completed by now!
- Latest release: v1.4

What is Rook?

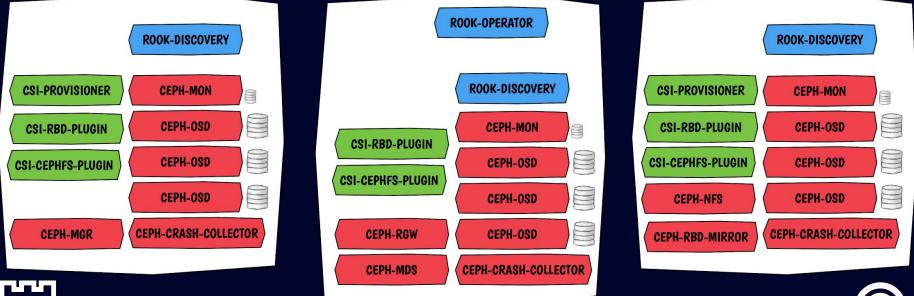
- Open Source
- Storage Operators for Kubernetes
- Automates Management of Ceph
 - Deployment
 - Configuration
 - Upgrading

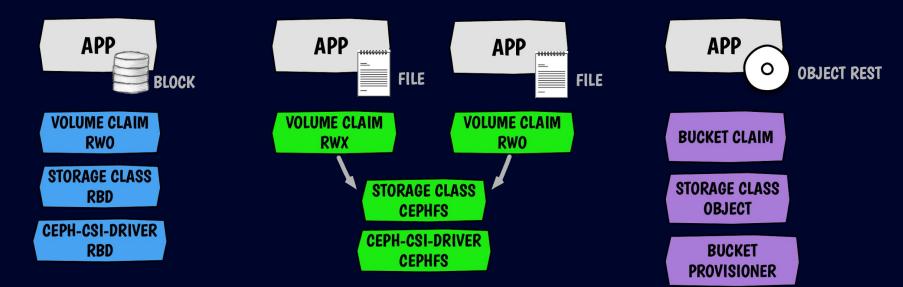
What is Ceph?

- Open Source
- Distributed storage software-defined solution
 - Block
 - Shared File System
 - Object Storage (S3 compliant)

ARCHITECTURE

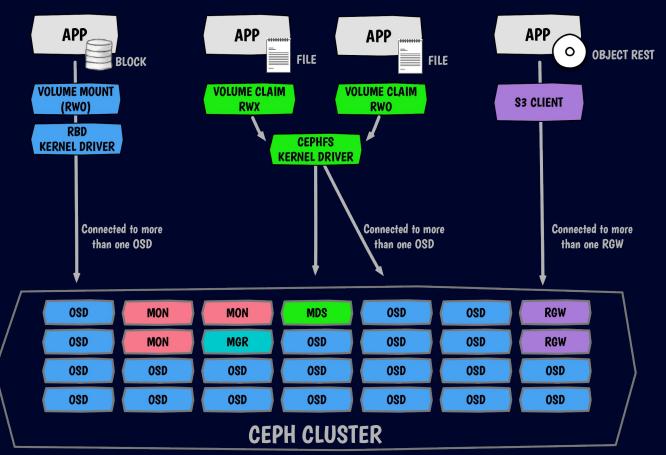
Architectural Layers


- Rook:
 - The operator owns the management of Ceph
- Ceph-CSI:
 - CSI driver dynamically provisions and connects client pods to the storage
- Ceph:
 - Data layer


Layer 1: Rook Management

ROOK

Layer 2: CSI Provisioning



Layer 3: Ceph Data Path

ROOK

GETTING STARTED

Installing Ceph is easy!

- Create the authorization (RBAC) settings
 - kubectl create -f common.yaml
- Create the Operator
 - kubectl create -f operator.yaml
- Create the CephCluster CR
 - kubectl create -f cluster.yaml

apiVersion: ceph.rook.io/v1 kind: CephCluster metadata: name: rook-ceph namespace: rook-ceph spec: cephVersion: image: ceph/ceph:v15.2.4 dataDirHostPath: /var/lib/rook mon count: 3 storage useAllNodes: true useAllDevices: true

Application Storage

- Admin creates a storage class
- Create a PVC
- Create your application pod

```
apiVersion: v1
kind: Pod
metadata:
 name: csirbd-demo-pod
speci
  containers:
   – name: web-server
     image: nginx
     volumeMounts:
       - name: mypvc
         mountPath: /var/lib/www/html
  volumes
   - name: mypvc
     persistentVolumeClaim:
       claimName: rbd-pvc
       readOnly: false
```

ceph

Storage Configuration

- Environments: Bare metal or Cloud
- Provision storage from a storage class (PV)
- Device management (non-PV):
 - a. Use all available raw devices or partitions
 - b. List all nodes and devices by name
 - c. Ceph Drive Groups

Cluster Topology

- Failure domains: High availability and durability
 - Ceph Monitors should be spread across zones
 - OSD CRUSH hierarchy will be automatically populated based on node labels
 - Spread OSDs evenly with pod topology constraints
- Rook can be deployed on specific nodes if desired
 - Node affinity, taints/tolerations, etc

Ceph in a Cloud Environment

- Consistent Storage Platform wherever K8s is deployed
- Overcome shortcomings of the cloud provider's storage
 - Storage across AZs
 - Slow failover times (seconds instead of minutes)
 - \circ Limitations of number of PVs per node (many more than ~30)
 - Perf characteristics of large volumes
- Ceph Monitors and OSDs run on PVCs
 - \circ $\,$ No need for direct access to local devices $\,$

KEY FEATURES

Upgrading is automated!

• To upgrade Rook, update the Operator version

- Simply update the Operator version
- Minor releases require steps as documented in the upgrade guide

image: rook/ceph:v1.4.2

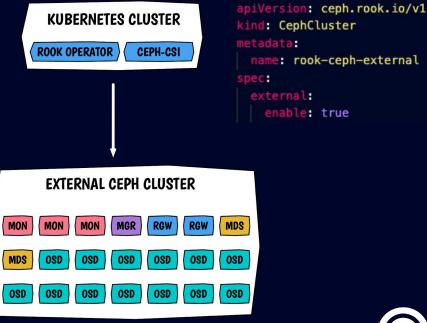
• To upgrade Ceph, simply update the CephCluster CR version

• Rook handles intricacies of Ceph version upgrades

image: ceph/ceph:v15.2.6

Ceph CSI Driver

- Ceph CSI 3.0 Driver is deployed by default with v1.4
 - Dynamic provisioning of RWO/RWX/ROX (RBD)
 - Dynamic provisioning of RWO/RWX/ROX (CephFS)
- Snapshots and clones are beta
 - Not backward compatible with alpha
- Flex driver is still available, but support is limited



External Cluster Connection

Connect to a Ceph cluster that you've configured separately from Kubernetes

- Inject the following in Kubernetes:
 - Monitors list
 - Keyring
 - Cluster FSID
- Create the cluster-external CR

Object Bucket Provisioning

- Define a Storage Class for object storage
- Create an "object bucket claim"
 - The operator creates a bucket when requested
 - Similar pattern to a Persistent Volume Claim (PVC)

ROOK v1.4 FEATURES

Multus Networking

- Multus is supported not experimental anymore
- "Whereabouts" IPAM is preferred
- Increased security, only expose desired network interfaces
- Separate internal Ceph traffic from public client traffic
- Lack of Services support

Object Multisite Replication (Experimental)

- Geographically replicate objects across Rook-Ceph clusters
 - Region
 - Datacenter
- New CRDs:
 - Realm
 - Zone group
 - Zone

Admission Controller

- Validates the creation of Custom Resources
- Reject incorrect CR before the Operator reconciles
- Not enabled by default (yet)

Toolbox Job

- Execute Ceph commands in a Kubernetes Job
- Examples:
 - Periodically collect information in the cluster
 - Remove failed OSDs from the cluster
- No manual intervention

Improved external mode

- More stable
- Gather External cluster metrics and put them in Prometheus
- External CephObjectStore:
 - use external gateways and integrate them as Kubernetes Service

And much more!

- Encryption for OSD on PVC
- Health checks and livenessprobe configuration
- All Rook CRDs have been converted to use the controller-runtime library
- Cluster cleanup during uninstall enhancements (sanitize drives)
- Ceph Drive Groups can be specified in the CephCluster CR

Thanks! https://rook.io/

tnielsen@redhat.com seb@redhat.com

Storage: All Devices

- Use all available devices that Rook discovers on nodes in the cluster
- Filter with a node selector where the nodes have a label role=storage-node

storage: useAllNodes: true useAllDevices: true

```
storage:
 useAllNodes: true
 useAllDevices: true
placement
 osd
    nodeAffinity:
      requiredDuringSchedulingIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: role
            operator: In
            values

    storage-node
```

Storage: Device Sets

- 1. Provision storage from a storage class
- 2. Native K8s solution: No need for direct access to hardware
- 3. OSDs can failover across nodes
- 4. Scenarios:
 - a. Cloud environments
 - b. Local PVs

storage storageClassDeviceSets: - name: set1 count: 3 portable: true volumeClaimTemplates: - metadata: name: data speci resources storage: 100Gi storageClassName: <name> volumeMode: Block accessModes: ReadWriteOnce placement: topologySpreadConstraints: - maxSkew: 1 topologyKey: kubernetes.io/hostname whenUnsatisfiable: DoNotSchedule labelSelector: matchExpressions: - key: app operator: In rook-ceph-osd rook-ceph-osd-prepare

Storage: Ceph Drive Groups

• Use hdds for data and ssds for metadata

 Use max of 6 devices between 10-50TB with separate db and wal devices

driveGroups:

- name: data_rotational
 spec:

data_devices:

rotational: 1 db_devices:

rotational: 0

Storage: Named Nodes and Devices

- List all nodes and devices by name
- Scenarios:
 - Absolute control rather than relying on discovery

storage:

useAllNodes: false
useAllDevices: false
nodes:

- name: "172.17.4.201"
 devices:
 - name: "sdb"
 - name: "/dev/disk/by-id/ata-ST4000DM004-XXXX"
 - name: "nvme01"
 - config
 - osdsPerDevice: "5"
- name: "172.17.4.301"
 deviceFilter: "^sd."

