
Multi-node Jobs with K8s:
Gang Scheduling, GPUs,
MPI and RDMA
Madhukar Korupolu, Sanjay Chatterjee

Deep Learning Applications

Title
Title
TitleTitle

AI / DL: Models, Frameworks, Hardware

FRAMEWORKS

CUDA & CORE LIBRARIES - cuBLAS | NCCL

 GPUs
& SYSTEMS

CLOUD GPU HGX DGX OEM

Object Detection Voice Recognition Language Translation
Recommendation

Engines Sentiment AnalysisImage Classification

COMPUTER VISION SPEECH AND AUDIO NATURAL LANGUAGE PROCESSING

 DL LIBRARIES

cuDNN

MATH LIBRARIES

cuBLAS cuSPARSE

COMMUNICATION

cuFFT
NCCL CUDA

& SDKs

Trends: Big Data, Larger Models

● Data and model sizes increasing

● BERT NLP: 110M, 330M params
○ Recent: 8B, 17B

● Strong demand for multi-gpu jobs
○ Larger problems
○ Faster turn-around
○ E.g., 128-GPUs per job

● ML Perf training results

Sample Multi-GPU Node: DGX-1

Single DGX-1 Node:

 8 Nvidia V100 GPUs

 Dual socket, NVLink in node

 4 Mlnx EDR NICs (100 Gbps)

 Dual 10GbE ports

Connecting Multiple nodes:

 Infiniband or RoCE

 4 x NICs to connected fabric

Distributed Training Applications

● Data / model parallelism

● Stochastic gradient descent (SGD)

● Async SGD: Parameter-server

● Sync SGD: All-reduce
○ NCCL / MPI
○ Utilize fast interconnects / RDMA
○ Horovod library

● Distributed TensorFlow / PyTorch

All Reduce

Parameter Server

Multi-GPU, Multi-node

K8s Challenges & Outline

● Motivation & background

● End-to-end flow: Array jobs
○ MPI & job lifecycle

● Gang scheduling

● Multi-rail RDMA / CNI

● Application / BERT

● Production shared clusters

● Quotas, queues, time limits

● Backfilling, utilization

● Monitoring / Operations
○ Dashboards / CICD

● Conclusions / Future work

Multi-node and K8s Gaining Traction

K8s Orchestration Flow

K8s API
Server Custom Scheduler

Custom
Job Controller

Kubelet

Container

MPI Operator

GPU

NCCL

MPI

TF/Horovod/PyT

Kubelet

Container

GPU

NCCL

MPI

TF/Horovod/PyT

Kubelet

Container

GPU

NCCL

MPI

TF/Horovod/PyT

Submit a multi-node job

Sample PyTorch Job Launch

K8s Multi-node PyTorch job launch

mpirun -np $ARRAY_SIZE -npernode 1

 python -m torch.distributed.launch
 --nproc_per_node=8 --nnodes=$ARRAY_SIZE
 --node_rank=$ARRAY_INDEX

--master_addr=$MASTER_IP bert_train.py <args>

nvrun ..

mpirun as launcher w/ NCCL backend

Sample Dist PyTorch job launch

python -m torch.distributed.launch

--nproc_per_node=8 --nnodes=2 --node_rank=0

--master_addr=localhost bert_train.py <args>

python -m torch.distributed.launch

--nproc_per_node=8 --nnodes=2 --node_rank=1

--master_addr=<ip> bert_train.py <args>

Array Jobs and MPI Operator

MPI Operator

Upstream in Kubeflow

Launch replicas on each node
● Kubectl exec, Lifecycle

Mods for gang scheduling

Array jobs

Abstraction for multi-node

Configurable type, size

Status msgs, Telemetry

SRIOV CNI for K8s Multi-Rail

Exposing multiple NIC
interfaces to K8s Pod

Multus delegates to SR-IOV
CNI and Flannel

Base SR-IOV CNI from
upstream w/ customizations

Gang Scheduling Multi-Node Pods

● Multi-node pods: All-or-none to make progress
○ Default K8s: pods one-by-one ⇒ deadlocks

● Gang / co-scheduling in K8s:
○ Open item for default K8s scheduler (since 2015)
○ Basic: loop over pods → wait → timeout → release
○ Being considered via Volcano, Poseidon, etc.

● Approach: PodGroup structure
○ Full node pods only, reservation based

PodGroup Queue and Manager

Preempt Pods

retry

SchedulingQ
(PGQ)

NextPod:
Node reserved?

PodGroup
Manager
(PGM)

SchedulePod

Reserve nodes
for pods

BindPodAdd pod

failed
Add

Unschedulable
Pod to Q

no

yes

● Experimental extensions to K8s ● Reserve nodes for full-node pods

Demo

https://docs.google.com/file/d/1-MvgwARGMRS3F-1RBsWW8p9Zu8Y3h-ur/preview

Sample Job Real-Time Telemetry

Sample BERT K8s Scaling

BERT Phase 1: batch_size_per_gpu = 64, seq length = 128
 Phase 2: batch_size_per_gpu = 16, seq length = 512

K8s Challenges & Outline

● Motivation & background

● End-to-end flow: Array jobs
○ MPI & job lifecycle

● Gang scheduling

● Multi-rail RDMA / CNI

● Application / BERT

● Production shared clusters

● Quotas, queues, time limits

● Backfilling, utilization

● Monitoring / Operations
○ Dashboards / CICD

● Conclusions / Future work

Shared K8s Cluster for Multi-node

● Production on-prem cluster
○ Early internal users
○ 100 DGX nodes, single hop

● Quotas - Concurrent GPU usage
○ Configurable per user, default

● Time limits
○ E.g. 128 node-hours
○ ⇒ 8 hours for 16-node job

● Starvation handling, backfilling
○ Blocking for large mn jobs
○ Backfilling for utilization

● Dynamic job priority
○ DRF fairness
○ Starvation, age etc
○ Weighted function

● Operations / dashboards

Scheduler Dashboard

Summary and Future Work

● Multi-node clusters with K8s
○ Gang scheduling, GPUs, MPI, RDMA

● MN enabled containers / models
○ Available from ngc.nvidia.com

● Ongoing work
○ Production hardening
○ Performance, Storage caching
○ Other array types, K8s framework

● Acknowledgements

http://ngc.nvidia.com

