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Trends: Big Data, Larger Models

● Data and model sizes increasing

● BERT NLP: 110M, 330M params
○ Recent: 8B, 17B

● Strong demand for multi-gpu jobs
○ Larger problems
○ Faster turn-around
○ E.g., 128-GPUs per job 

● ML Perf training results



Sample Multi-GPU Node: DGX-1

Single DGX-1 Node:

    8 Nvidia V100 GPUs

    Dual socket, NVLink in node

    4 Mlnx EDR NICs (100 Gbps)

    Dual 10GbE ports

Connecting Multiple nodes:

    Infiniband or RoCE

    4 x NICs to connected fabric 

 



Distributed Training Applications

● Data / model parallelism

● Stochastic gradient descent (SGD)

● Async SGD: Parameter-server 

● Sync SGD: All-reduce 
○ NCCL / MPI 
○ Utilize fast interconnects / RDMA
○ Horovod library

● Distributed TensorFlow / PyTorch

All Reduce

Parameter Server

Multi-GPU, Multi-node



K8s Challenges & Outline

● Motivation & background

● End-to-end flow: Array jobs
○ MPI & job lifecycle

● Gang scheduling

● Multi-rail RDMA / CNI 

● Application / BERT 

● Production shared clusters

● Quotas, queues, time limits

● Backfilling, utilization

● Monitoring / Operations
○ Dashboards / CICD

● Conclusions / Future work

Multi-node and K8s Gaining Traction



K8s Orchestration Flow
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Submit a multi-node job



Sample PyTorch Job Launch

K8s Multi-node PyTorch job launch

mpirun -np $ARRAY_SIZE -npernode 1 

  python -m torch.distributed.launch    
  --nproc_per_node=8 --nnodes=$ARRAY_SIZE    
  --node_rank=$ARRAY_INDEX      

--master_addr=$MASTER_IP bert_train.py <args>

nvrun ..

mpirun as launcher w/ NCCL backend

Sample Dist PyTorch job launch

python -m torch.distributed.launch 

--nproc_per_node=8 --nnodes=2 --node_rank=0 

--master_addr=localhost bert_train.py <args>

python -m torch.distributed.launch 

--nproc_per_node=8 --nnodes=2 --node_rank=1 

--master_addr=<ip> bert_train.py <args>



Array Jobs and MPI Operator

MPI Operator

Upstream in Kubeflow 

Launch replicas on each node 
● Kubectl exec, Lifecycle

Mods for gang scheduling

Array jobs

Abstraction for multi-node 

Configurable type, size

Status msgs, Telemetry



SRIOV CNI for K8s Multi-Rail

Exposing multiple NIC 
interfaces to K8s Pod

Multus delegates to SR-IOV 
CNI and Flannel

Base SR-IOV CNI from 
upstream w/ customizations



Gang Scheduling Multi-Node Pods

● Multi-node pods: All-or-none to make progress 
○ Default K8s: pods one-by-one ⇒ deadlocks

● Gang / co-scheduling in K8s: 
○ Open item for default K8s scheduler (since 2015)
○ Basic: loop over pods → wait → timeout → release
○ Being considered via Volcano, Poseidon, etc.

● Approach: PodGroup structure 
○ Full node pods only, reservation based 



PodGroup Queue and Manager
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● Experimental extensions to K8s ● Reserve nodes for full-node pods



Demo

https://docs.google.com/file/d/1-MvgwARGMRS3F-1RBsWW8p9Zu8Y3h-ur/preview


Sample Job Real-Time Telemetry



Sample BERT K8s Scaling

BERT Phase 1: batch_size_per_gpu = 64, seq length = 128
           Phase 2: batch_size_per_gpu = 16, seq length = 512



K8s Challenges & Outline

● Motivation & background

● End-to-end flow: Array jobs
○ MPI & job lifecycle

● Gang scheduling

● Multi-rail RDMA / CNI 

● Application / BERT 

● Production shared clusters
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● Backfilling, utilization
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Shared K8s Cluster for Multi-node

● Production on-prem cluster
○ Early internal users
○ 100 DGX nodes, single hop 

● Quotas - Concurrent GPU usage
○ Configurable per user, default

● Time limits
○ E.g. 128 node-hours
○ ⇒ 8 hours for 16-node job

● Starvation handling, backfilling
○ Blocking for large mn jobs
○ Backfilling for utilization

● Dynamic job priority
○ DRF fairness
○ Starvation, age etc
○ Weighted function

● Operations / dashboards



Scheduler Dashboard



Summary and Future Work

● Multi-node clusters with K8s
○ Gang scheduling, GPUs, MPI, RDMA

● MN enabled containers / models
○ Available from ngc.nvidia.com

● Ongoing work
○ Production hardening
○ Performance, Storage caching 
○ Other array types, K8s framework

● Acknowledgements
 

http://ngc.nvidia.com



