
Performance Optimization: 
Rook on Kubernetes

Ryan Tidwell 

Senior Software Engineer

rtidwell@suse.com

Mark Darnell 

Senior Product Manager

mdarnell@suse.com



• Introduction

• Benchmark Environment

• Benchmark Methodology and Results

• Insights

• Future Work

• Q&A

Agenda
PERFORMANCE OPTIMIZATION: ROOK ON KUBERNETES



 Introduction

Copyright © SUSE 20203



• The choice of networking technology will affect the performance 
of modern storage systems like Ceph

• Develop an understanding of how the choice of CNI plugin 
affects a Rook+Ceph cluster

• What can we learn and apply to projects like Calico, Cilium, 
Multus, NSM, etc. ?

Copyright © SUSE 20204

Motivation
INTRODUCTION



Copyright © SUSE 20205

Rook+Ceph Basics
INTRODUCTION

https://rook.io/docs/rook/v1.3/ceph-storage.html



Copyright © SUSE 20206

Kubernetes Networking: The Basics
INTRODUCTION

• Use of standard linux interfaces such as veth, 

macvlan/ipvlan, physical interface, SR-IOV VF, etc.

• Host networking allows direct, native access to the 

node's network devices

• Let's explore how different technologies stack up



 

Benchmark 
Environment

Copyright © SUSE 20207



Copyright © SUSE 20208

Hardware Specs
BENCHMARK ENVIRONMENT

Ceph Nodes
• 2x 8-Core Intel Xeon E5-2620
• 64GB Memory
• Intel DC P3700 NVMe 

800GB SSD
• Mellanox MT27800 100Gb NIC

Client Node
• 2x 8-Core Intel Xeon E5-2620
• 64GB Memory
• QLogic QL4500 25GbE NIC

(Bonded Pair)



Copyright © SUSE 20209

Hardware Specs: SSD Baseline
BENCHMARK ENVIRONMENT

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1m 2m 4m 8m
0

50000

100000

150000

200000

250000

300000

350000

400000

Raw Disk IOPS Write

Raw Disk IOPS Read

Disk Block Size (K)



Copyright © SUSE 202010

Software
BENCHMARK ENVIRONMENT

• SLE 15 SP2 (Kernel 5.3.18)
• Rook 1.3
• Ceph 14.2.6
• Cilium 1.7
• Calico 3.14



Copyright © SUSE 202011

Logical Cluster Design
BENCHMARK ENVIRONMENT



Copyright © SUSE 202012

Physical Cluster Layout
BENCHMARK ENVIRONMENT



 

Benchmark 
Methodology 
and Results

Copyright © SUSE 202013



Total Latency = Disk Access + Network Transport Latency + Kernel Network Stack Latency

Copyright © SUSE 202014

Latency is the Enemy (says the network engineer)

BENCHMARK METHODOLOGY AND RESULTS

• Latency is variable delay inserted by 
components in a pipeline

• Look to the left to see where latency is 
added

• Disk access latency is not influenced by 
CNI and network configuration

• Network transport latency is influenced 
by bandwidth, congestion, bonding & 
switch configuration, etc.

• Kernel latency is highly dependent on CNI 
configuration



Total Latency = Disk Access + Network Transport Latency + Kernel Network Stack Latency

Copyright © SUSE 202015

Storage folks talk in terms of IOPS
BENCHMARK METHODOLOGY AND RESULTS

• IOPS = I/O per Second

• A single I/O operation incurs all network-
related overhead

• Less network latency = more IOPS



• Scientific method – change one variable; hold all others constant
• Optimize base system – jumbo frames and make disk faster than network
• Note - disk access time is constant regardless of CNI plugin used
• Run a single RBD client on dedicated node measuring IOPS, latency, peak 

bandwidth demands
• Execute the prior step for each CNI plugin under evaluation

Copyright © SUSE 202016

Methodology
BENCHMARK METHODOLOGY AND RESULTS



Copyright © SUSE 202017

Read Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~20-25% encapsulation 
overhead relative to host 
networking

• ~2% overhead for Cilium 
Direct



Copyright © SUSE 202018

Read Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~30-50% encapsulation 
overhead relative to host 
networking

• ~10% overhead for Cilium 
Direct in the worst case



Copyright © SUSE 202019

Write Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~5-15% 
encapsulation 
overhead

• ~2% overhead for 
Cilium Direct



Copyright © SUSE 202020

Write Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~1-2% overhead 
• Calico IPIP incurs 

~5-6% overhead



Copyright © SUSE 202021

A Word About Bonding...
BENCHMARK METHODOLOGY AND RESULTS

• Bonding makes multiple physical interfaces appear as a single 
interface with multiple "channels" working behind the scenes

• Linux supports a myriad of bonding modes, we used LACP (mode 4)

• Each bonding mode has its own tunable paramters

• How traffic is balanced across channels of a bond will influence 
performance

LACP hash policies determine which channel  packets are sent and received on



Copyright © SUSE 202022

Bonding And Why It Matters...
BENCHMARK METHODOLOGY AND RESULTS

• During initial round of benchmarks we observed poor 
utilization of the 2 x 25Gb bond

• Network bandwidth demands maxed out at ~25Gbps

• Can we drive better utilization by tuning the bonding 
configuration?



Copyright © SUSE 202023

Tuned Bond Settings
BENCHMARK METHODOLOGY AND RESULTS

xmit_hash_policy

Host Networking layer3+4

Cilium VXLAN encap3+4

Cilium Direct layer2+3

• These settings yielded the most dramatic performance gains in our cluster
• These settings were optimized for this specific cluster. Factors such as cluster size, 

bonding mode, ToR capabilities, etc. may call for different settings



Copyright © SUSE 202024

Write Benchmarks: Tuned Hash Policies
BENCHMARK METHODOLOGY AND RESULTS

• Underwhelming performance 
gains with tuned hash policy

• Not enough traffic on the 
network for balancing to matter



Copyright © SUSE 202025

Write Benchmarks: Tuned Hash Policies
BENCHMARK METHODOLOGY AND RESULTS

• Bigger blocks sizes demand 
more bandwidth

• Significant performance 
gains with tuned hash 
policies: as much as 40% 
more IOPS!



 Insights

Copyright © SUSE 202026



Copyright © SUSE 202027

What To Know About Bonding
INSIGHTS

• Bonding modes and LACP transmit hash policies can make a 
significant difference

• Tuning xmit_hash_policy on the node and corresponding settings on 
the ToR switch enable better balance of traffic across channels in the 
bond

• As network bandwidth demands rise, so does the importance of 
bonding configuration

• These configurations will be specific to your environment and 
depend on factors such as CNI configuration, scale, and hardware 
capabilities



• Overlays and encapsulation limit IOPS by introducing latency, avoid 
encapsulation where possible

• Bandwidth demands of a single client are highly correlated with block 
size – Align with native block size!

• When using bonds, pay attention to hash policies and load balancing 
settings on both the host and ToR switch – Tuning these settings can 
yield significant performance gains!

Copyright © SUSE 202028

General Recommendations
INSIGHTS



• The best hardware without the best CNI will leave you wanting

• Host networking is easy and performs well but...a bit insecure

• IOPS matter, and un-necessary network latency hurts IOPS

• CNI policy enforcement may be better than Ceph policy enforcement

Copyright © SUSE 202029

Selecting a CNI Plugin
INSIGHTS



 Future Work

Copyright © SUSE 202030



• Multus w / SR-IOV
• Calico BPF
• Explore improved inline instrumentation
• Scaling the workoad in the cluster – more clients & more storage nodes

Copyright © SUSE 202031

Where To Go Next?
FUTURE WORK



 Q&A

Copyright © SUSE 202032



 Thank You


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

