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 Introduction
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• The choice of networking technology will affect the performance 
of modern storage systems like Ceph

• Develop an understanding of how the choice of CNI plugin 
affects a Rook+Ceph cluster

• What can we learn and apply to projects like Calico, Cilium, 
Multus, NSM, etc. ?
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Motivation
INTRODUCTION



Copyright © SUSE 20205

Rook+Ceph Basics
INTRODUCTION

https://rook.io/docs/rook/v1.3/ceph-storage.html
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Kubernetes Networking: The Basics
INTRODUCTION

• Use of standard linux interfaces such as veth, 

macvlan/ipvlan, physical interface, SR-IOV VF, etc.

• Host networking allows direct, native access to the 

node's network devices

• Let's explore how different technologies stack up



 

Benchmark 
Environment
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Hardware Specs
BENCHMARK ENVIRONMENT

Ceph Nodes
• 2x 8-Core Intel Xeon E5-2620
• 64GB Memory
• Intel DC P3700 NVMe 

800GB SSD
• Mellanox MT27800 100Gb NIC

Client Node
• 2x 8-Core Intel Xeon E5-2620
• 64GB Memory
• QLogic QL4500 25GbE NIC

(Bonded Pair)
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Hardware Specs: SSD Baseline
BENCHMARK ENVIRONMENT
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Software
BENCHMARK ENVIRONMENT

• SLE 15 SP2 (Kernel 5.3.18)
• Rook 1.3
• Ceph 14.2.6
• Cilium 1.7
• Calico 3.14
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Logical Cluster Design
BENCHMARK ENVIRONMENT
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Physical Cluster Layout
BENCHMARK ENVIRONMENT



 

Benchmark 
Methodology 
and Results
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Total Latency = Disk Access + Network Transport Latency + Kernel Network Stack Latency
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Latency is the Enemy (says the network engineer)

BENCHMARK METHODOLOGY AND RESULTS

• Latency is variable delay inserted by 
components in a pipeline

• Look to the left to see where latency is 
added

• Disk access latency is not influenced by 
CNI and network configuration

• Network transport latency is influenced 
by bandwidth, congestion, bonding & 
switch configuration, etc.

• Kernel latency is highly dependent on CNI 
configuration



Total Latency = Disk Access + Network Transport Latency + Kernel Network Stack Latency
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Storage folks talk in terms of IOPS
BENCHMARK METHODOLOGY AND RESULTS

• IOPS = I/O per Second

• A single I/O operation incurs all network-
related overhead

• Less network latency = more IOPS



• Scientific method – change one variable; hold all others constant
• Optimize base system – jumbo frames and make disk faster than network
• Note - disk access time is constant regardless of CNI plugin used
• Run a single RBD client on dedicated node measuring IOPS, latency, peak 

bandwidth demands
• Execute the prior step for each CNI plugin under evaluation
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Methodology
BENCHMARK METHODOLOGY AND RESULTS
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Read Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~20-25% encapsulation 
overhead relative to host 
networking

• ~2% overhead for Cilium 
Direct
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Read Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~30-50% encapsulation 
overhead relative to host 
networking

• ~10% overhead for Cilium 
Direct in the worst case
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Write Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~5-15% 
encapsulation 
overhead

• ~2% overhead for 
Cilium Direct
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Write Benchmarks
BENCHMARK METHODOLOGY AND RESULTS

• ~1-2% overhead 
• Calico IPIP incurs 

~5-6% overhead
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A Word About Bonding...
BENCHMARK METHODOLOGY AND RESULTS

• Bonding makes multiple physical interfaces appear as a single 
interface with multiple "channels" working behind the scenes

• Linux supports a myriad of bonding modes, we used LACP (mode 4)

• Each bonding mode has its own tunable paramters

• How traffic is balanced across channels of a bond will influence 
performance

LACP hash policies determine which channel  packets are sent and received on
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Bonding And Why It Matters...
BENCHMARK METHODOLOGY AND RESULTS

• During initial round of benchmarks we observed poor 
utilization of the 2 x 25Gb bond

• Network bandwidth demands maxed out at ~25Gbps

• Can we drive better utilization by tuning the bonding 
configuration?
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Tuned Bond Settings
BENCHMARK METHODOLOGY AND RESULTS

xmit_hash_policy

Host Networking layer3+4

Cilium VXLAN encap3+4

Cilium Direct layer2+3

• These settings yielded the most dramatic performance gains in our cluster
• These settings were optimized for this specific cluster. Factors such as cluster size, 

bonding mode, ToR capabilities, etc. may call for different settings
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Write Benchmarks: Tuned Hash Policies
BENCHMARK METHODOLOGY AND RESULTS

• Underwhelming performance 
gains with tuned hash policy

• Not enough traffic on the 
network for balancing to matter
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Write Benchmarks: Tuned Hash Policies
BENCHMARK METHODOLOGY AND RESULTS

• Bigger blocks sizes demand 
more bandwidth

• Significant performance 
gains with tuned hash 
policies: as much as 40% 
more IOPS!



 Insights
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What To Know About Bonding
INSIGHTS

• Bonding modes and LACP transmit hash policies can make a 
significant difference

• Tuning xmit_hash_policy on the node and corresponding settings on 
the ToR switch enable better balance of traffic across channels in the 
bond

• As network bandwidth demands rise, so does the importance of 
bonding configuration

• These configurations will be specific to your environment and 
depend on factors such as CNI configuration, scale, and hardware 
capabilities



• Overlays and encapsulation limit IOPS by introducing latency, avoid 
encapsulation where possible

• Bandwidth demands of a single client are highly correlated with block 
size – Align with native block size!

• When using bonds, pay attention to hash policies and load balancing 
settings on both the host and ToR switch – Tuning these settings can 
yield significant performance gains!
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General Recommendations
INSIGHTS



• The best hardware without the best CNI will leave you wanting

• Host networking is easy and performs well but...a bit insecure

• IOPS matter, and un-necessary network latency hurts IOPS

• CNI policy enforcement may be better than Ceph policy enforcement
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Selecting a CNI Plugin
INSIGHTS



 Future Work
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• Multus w / SR-IOV
• Calico BPF
• Explore improved inline instrumentation
• Scaling the workoad in the cluster – more clients & more storage nodes
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Where To Go Next?
FUTURE WORK



 Q&A
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 Thank You
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