

Europe 2020

Optimized Resource Allocation in Kubernetes? Topology Manager is Here

Conor Nolan, Intel & Victor Pickard, Red Hat

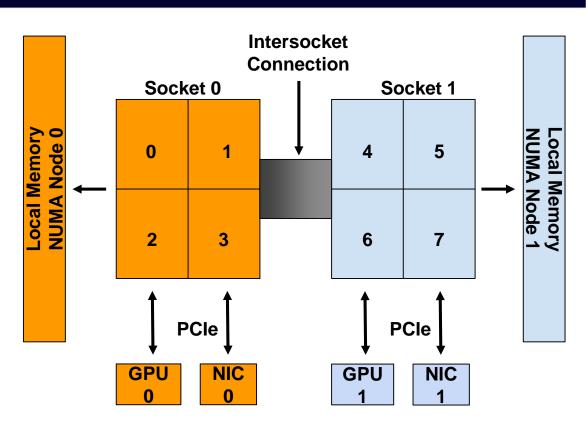
Summary

- Introduction and Motivation with Use Cases
- CPU Manager and Device Manager
- Topology Manager Overview
- Performance Results
- What's next
- Contributing

The Need for NUMA Awareness

- Workloads in areas such as Telco 5G, scientific computing, machine learning, AI, financial services and data analytics often have NUMA alignment as a requirement
- DPDK based network applications may require dedicated CPUs, huge page memory, and SR-IOV VFs on the same NUMA node for optimal, low-latency execution.

A Broader Context


- An increasing number of systems desire a combination of CPUs and hardware accelerators to support performance sensitive applications that desire low-latency and high-throughput
- Hardware resource allocations, such as CPUs and Devices (SR-IOV,
 GPUs), need to be coordinated to achieve optimal performance

What is NUMA

NUMA = Non-Uniform Memory Access

- On multi-CPU systems, all memory is visible and accessible from any CPU
- Local memory access is fastest
- Non-local memory access time is variable, depending on number of interconnects
- Peripheral devices also affected by local and non-local access
- For optimal performance, CPUs and devices should be on the same NUMA node

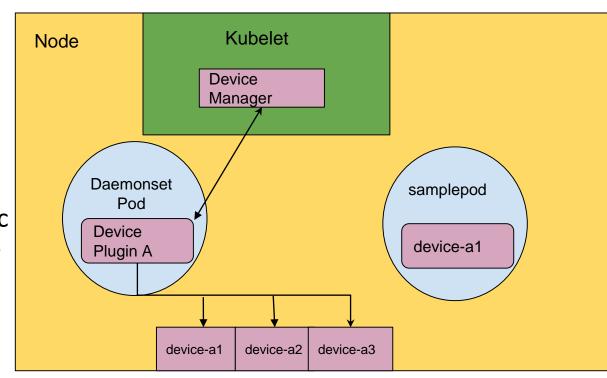
CPU Manager

 CPU Manager - allocates exclusive CPUs to containers in Guaranteed Pods

 "Static" CPU Manager policy manages a shared pool of CPUs

 A container in a Guaranteed Pod with integer CPU request(s) is allocated CPUs that are assigned exclusively to the container

```
apiVersion: v1
Kind: Pod
spec:
containers:
- name: guaranteed-container
  image: nginx
  resources:
   requests:
    cpu: 2
    memory: 200Mi
    gpu-vendor.com/gpu: 1
    nic-vendor.com/nic: 1
   limits:
    cpu: 2
    memory: 200Mi
    gpu-vendor.com/gpu: 1
    nic-vendor.com/nic: 1
```



Device Plugins

Advertise system
 hardware resources to
 Device Manager in the
 Kubelet

 Enables vendor specific initialization and setup

 API for Device Plugins to communicate with Device Manager

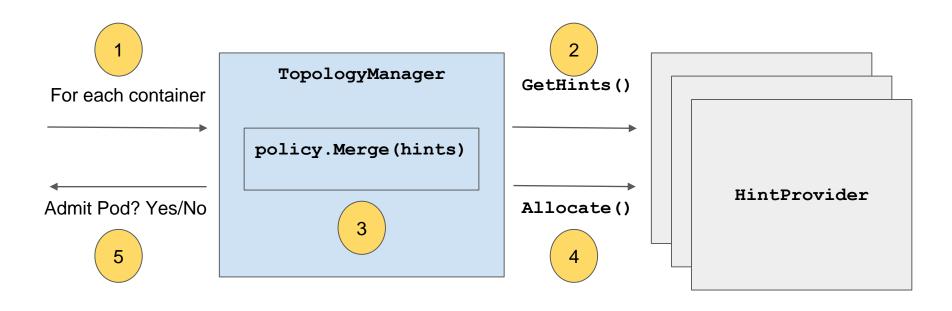

Introducing Topology Manager

- Beta as of Kubernetes 1.18
- CPU and Device Manager assign resources independently, which could result in sub-optimal allocation
- Topology Manager provides an interface to coordinate resource assignment on a Node level
- CPU and Device Manager implement the Topology Manager interface
- Ability to assign resources to Pod/Container from the same NUMA node
 - CPUs
 - SR-IOV VFs
 - GPUs

Topology Manager Continued

apiVersion: v1 Kind: Pod spec: containers: - name: aligned-pod image: nginx resources: requests: cpu: 2 memory: 200Mi vendor/device-a: 1 limits: cpu: 2 memory: 200Mi vendor/device-a: 1

Topology Manager Policies


Node Level Policies:

- none: Default policy that does not perform any topology alignment
- best-effort: Attempts to align resources optimally on NUMA nodes
- restricted: Attempts to align resources optimally on NUMA nodes or pod admission fails
- single-numa-node: Attempts to align resources on a single NUMA node or pod admission fails

So How Does it Work?

Topology Hints

A **TopologyHint** encodes a set of constraints from which a given resource request can be satisfied. At present, the only constraint we consider is NUMA alignment. It is defined as follows:

```
type TopologyHint struct {
    NUMANodeAffinity bitmask.BitMask
    Preferred bool
}
```

- The NUMANodeAffinity field contains a bitmask of NUMA nodes where a resource request can be satisfied.
- The Preferred field contains a boolean that encodes whether the given hint is "preferred" or not.

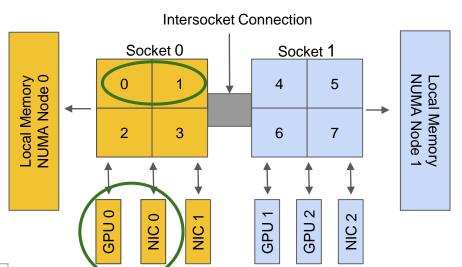
Example 1

Topology Hints for each resource:

```
. CPU:
```

[{01 true} {10 true} {11 false}]

. NIC:


[{01 true} (10 true) (11 false)]

GPU:

[{01 true} |{10 true} |{11 false}|

Merged Hints:

Policy {01 true} {0	Best Hint 0 false}	Admit? Yes/No
Best Efforte)	·{01·true}	Yes
Restricted se	{01 true}	Yes
Single NUMA Node	{01 true}	Yes


```
Kind: Pod
spec:
  containers:
  request:
   memory: 64Mi
   cpu: 2
   nic-vendor.com/nic: 1
   gpu-vendor.com/gpu: 1
```


Example 2

Topology Hints for each resource:

```
. CPU:
```

[{01 true} {10 true} {11 false}]


. NIC:

[{01 true} {10 true} {11 false}]

. GPU:

[{11 false}]

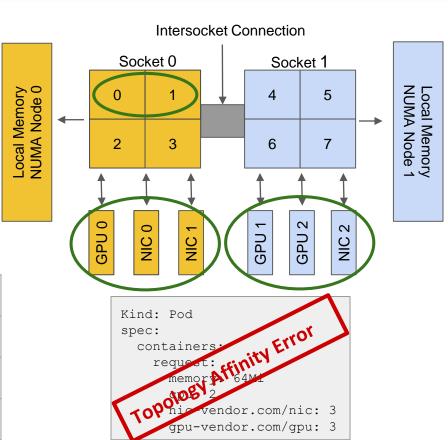
Policy	Best Hint	Admit? Yes/No
Best Effort	{01 false}	Yes
Restricted	{01 false}	No
Single NUMA Node	{11 false}	No

Example 3

Topology Hints for each resource:

```
. CPU:
```

[{01 true} {10 true} {11 false}]


. NIC:

[{11 true}]

. GPU:

[{11 true}]

Policy	Best Hint	Admit? Yes/No
Best Effort	{01 true}	Yes
Restricted	{01 true}	Yes
Single NUMA Node	{11 false}	No

Performance Improvement

Packet Size (B)	DPDK Throughput Without NUMA Alignment (GBPS)	DPDK Throughput With NUMA Alignment (GBPS)	Performance Improvement
64	27.97	58.81	2.1x
128	48.46	102.36	2.1x
256	86.59	190.60	2.2x
512	161.58	198.09	1.2x
1024	199.99	200.00	0

Reference:

https://builders.intel.com/docs/networkbuilders/topology-management-implementation-in-kubernetes-technology-guide.pdf

Future Enhancements

- Support Device Specific Constraints
 - KEP: https://github.com/kubernetes/enhancements/pull/1121
- Support Pod Level Resource Alignment
 - KEP: https://github.com/kubernetes/enhancements/pull/1752
- NUMA Alignment for Hugepages
 - KEP: https://github.com/kubernetes/enhancements/pull/1203
- Topology Aware Scheduling
 - KEP: https://github.com/kubernetes/enhancements/pull/1870
 - KEP: https://github.com/kubernetes/enhancements/pull/1858
- Per-Pod Alignment Policy

Getting Involved

- Find out more about Topology Manager
 - Control Topology Manager Policies on a Node
 - Kubernetes Topology Manager Moves to Beta Align Up!

- Interested in learning more or contributing? Join SIG-Node meetings
 - Every Tuesday at 10:00 PT https://zoom.us/j/4799874685

CloudNativeCon

Europe 2020

Virtual

CONNECTED

