salesforce

Operating enterprise grade
Kubernetes clusters at

Salesforce on bare metal
Kubecon + CNCF Europe 2020

Anubhav Dhoot, Senior Director
@anubhavdhoot | adhoot@salesforce.com

Mayank Kumar, Architect
@krmayank | mayank.kumar@salesforce.com

Introduction

e Who is this talk for?
e Agenda
o Deep dive into our bare-metal Kubernetes implementation
o War stories
o Current and future investments

Overview of Salesforce on-premise Kubernetes platform&®

-]

[Kubernetes, Docker, etcd] [Kubernetes, Docker]
[Systemd] [Systemd]
[Puppet] [Puppet)

Master Nodes A Worker Nodes

Puppet module deep dive

Goals: Fully automated management with high availability and security built in

Usage: class{ 'kubernetes':
master => true

}

N
Master — Node RPM

Puppet Class Puppet Class Systemd
e Etcd e Docker e Binaries
e ApiServer e kubelet e Configuration
e Controller Manager e kube-proxy
e Scheduler e Flannel/SDN

e HAproxy

Puppet module features

Completely automated deployment of etcd, docker and kubernetes

Configuration flags for services

Etcd service waits for quorum

Service account supports key rotation

Additional Docker instance for running bootstrap services
o Docker needs flannel which we needed to run in Docker
o Flannel also needs etcd

salesforce

A,

docker Kubernetes
Main
‘* Etcd
docker Flannel/SDN
Bootstrap

AP Y il

Kubernetes on Puppet review

o Its automated
o Declarative
o Can stagger across machines

o No health mediation or orchestration
o Iteration cycles are expensive
o Base module changes can break your module

Operationalize

e Etcd and Kubernetes control plane high availability setup
o HAproxy for supporting multiple api servers
e Security hardening
o mTLS for all communication
o Security isolation
e Monitor everything
o Watchdogs that monitor and alert
o SQL based monitoring pipeline that provides snapshot visibility and custom alerting
o Sloop for historical visibility
e Automate operations

https://github.com/salesforce/sloop

Monitoring bare metal Kubernetes

api-server ::> watchdog > [Pagerduty } @
" controller- (|
| manager | ::> | watchdog]

etcd ::> watchdog ::> ﬂ |

Sql

DC1 < Kafka <>:> Visibility/Alerting
:ﬁ Framework
|
| '

Other DC’s

O

LG A

War stories

War story #1 - Perils of mounting hostPath

Dangerous knobs in kubernetes

e Symptom - Pods were stuck in ContainerCreating for a long time

e Root cause: Some pods were mounting the root filesystem(/). (/) includes folder
[var/lib/kubelet where kubelet mounts emptyDir and secrets

e During pod deletion the tear down of mounted volumes fails because its mounted
inside the problematic container.

e This prevents a new pod from coming up

e Fix: Dont mount root, validate what hostPaths are allowed
e Learning: hostPath is dangerous and should be avoided. This was at the time when
Local volumes were still being designed

War story #2 - Bridge networking failures

Network troubleshooting is hard

Symptom - Intermittent connectivity failure for
microservices communicating through a
Kubernetes service

Deeper analysis pointed to failures only when
client and server pods are on the same host

Root Cause: some team set
bridge-nf-call-iptables=0 as an optimization
This skips iptables for packets traversing the
bridge which broke kube-proxy iptables rule.
Learning: You should invest in robust network
monitoring

salesforce

bridge-nf-call-ipt

iptables

ables:OI \

/
vethlg Bridge%/ethz

O

Pod1

Kernel

Minion Host

War story #3 - Bullying quorum members

Etcd configuration challenges

e Symptom - Etcd state was wiped out in our R&D cluster
e 2 out of the 3 nodes got reinitialized with empty state and since they were in quorum,
convinced the third to replicate empty state

e Fix: Change the etcd flags from new to existing after “initialization period”
e Learnings : Etcd doc is not clear on the dangers of the flags (see screenshot below). do
regular backups of etcd data, game day exercises

-initial-cluster-state

o Initial cluster state (“new” or “existing”). Setto new for all members present during initial static or DNS bootstrapping. If
this optionissetto existing ,etcd will attempt to join the existing cluster. If the wrong value is set, etcd will attempt to
start but fail safely.

e default: “new”

e envvariable: ETCD_INITIAL_CLUSTER_STATE

s ;Aﬂ‘

>

War story #4 - Handle sharp tools with care

Dangers of mutating webhooks

Symptom - R&D cluster control plane servers going down with memory leak
No obvious usage of memory other than excessive number of pods
Short term fix: Restart each ApiServer on memory limit to prevent cluster tipping over

Root cause: A new Mutating webhook admission controller was leaking pods
The json patch in trying to add a label, dropped all other labels on the pod being
created, thus preventing the deployment controller from adopting the pods
Detection: Alert on number of pods
Long term mitigation: Proper json patch and Systemd memory limits for Apiserver
Learnings:

o Mutating webhook admission controllers need validation and canarying

o Adding limits is better than making the node unusable

War story #5 - Inconsistent Api Servers flags

Canarying feature flags in Kubernetes

e Symptom - ReplicaSet controller was failing to create pods

e Root cause: Puppet canarying of service account flags across masters

e We did not catch in testing as this failure depends on combination of canarying
and leader election across masters

e Fix: Synchronize the rollout of Api server and controller manager flags everywhere

e Learning: Staged rollout does not always work when rolling out new feature flags

¥ Service ApiServer :
> | ApiServer Account ___ ___ _________
2 Admission
8 [Token Controller }
S e I Leader
el | Standby Controller Manager I Controller Manager
0

T Service Account =1 Service Account = 0

(Puppet Version n+1) (Puppet Version n)

Summary

e Roll your own kubernetes requires a lot of expertise and investments
e We have invested in the following
Fully automated, highly available and secure, Docker, Etcd and Kubernetes infrastructure
Integrations with networking, security, monitoring (logs, metrics, alerts)
Watchdog monitoring and visibility pipeline
Cost-to-serve visibility at container, namespace and team
Robust on call rotation for infrastructure and runbooks -~
e Ongoing and Future projects
o PaasS layer for containers and other cloud resources (DB, Blob)
o Open source more of our investments
e Open source projects
o Blog describing our Generic sidecar injector
o Sloop for Kubernetes history visualization
Come join us in our journey!

O O O O

(@)

https://engineering.salesforce.com/a-generic-sidecar-injector-for-kubernetes-c05eede1f6bb
https://github.com/salesforce/generic-sidecar-injector
https://github.com/salesforce/sloop

S I 0 O p salesforce

Historical Kubernetes Visualization

Sloop v0.2 o G ; ; : ; ; : ; 11PM

Kubernetes History Visualization

)
cluster-info

pseudo-kubeapi
Kubernetes Context: "
docker-desktop nginx-deployment —

e el -5t
[l B

Y > mer-ead
1 Hour

T T T
Ll —_————————

1) .-

Fiter Kind: I oo 7oce-ocse

ort:
Start Time

mysql-pure-cache-0
Name Filter: -docker-desktop

nginx-deployment-6dd86d77d-2mfp7 Jj
nginx-deployment-6dd86d77d-sxpnk !_l]
Submit
nginx-deployment-6dd86d77d-8txrm _
nginx-deployment-6dd86d77d-xkr74 O
nginx-deployment-6dd86d77d-fxqzm !-'J

| compose-6¢c67d745f6

List Keys i
View Config - .
Query Data File 1] o Pose-api
Source Code on GitHub

6dd86d77d |

Y '<bs-dns
__ hostpath
" 1005 1010 10115 1020 1025 10:30 10:35 : 10:45

1PM

Json Patch (War story 4)

: "add",
"path": "/metadata/labels"”, Wrong Patch
"value": {

"sherpa-injector.service-mesh/status”": "injected"

"

Opll: lladdll’
"path": "/metadata/labels/sherpa-injector.service-mesh~1status”,
"value": "injected"

Correct Patch

