
Álvaro Iradier Muro

OpenID Connect as SSO solution:
strengths and weaknesses

Agenda

OpenID Connect as SSO solution: strengths and weaknesses

• Single Sign-on basics
• What is OpenID Connect (OIDC)
• Typical flow examples
• OIDC comparison

• vs others (LDAP, Kerberos, cookies, …)
• vs SAML
• vs OpenID 2.0
• vs Oauth2
• vs JWT

• Why use OpenID Connect?
• Testing and debugging OIDC
• Creating an OIDC client
• Real world example: dealing with complex authentication scenarios
• Other caveats
• The good, the bad and the ugly
• Q&A

Single Sign-on basics
Allow users use a single set of login credentials for multiple applications.
Applications can be related, but independent.

<diagram here>

Why?
• Remember less passwords, and no need to reenter them on every app.
• Security: lessen chances of phising, reduce password fatigue.
• Reduce password issues for IT help desks.
Why not?
• Higher risk for exposed credentials. Increase focus on protection (i.e. MFA).
• Criticality – single point of failure - of authentication system.

What is OpenID Connect (OIDC)
• Identity layer on top of OAuth 2.0 protocol.
• Verify identity, delegated to an Authorization

Server.
• Obtain End-User basic profile information.
• Interoperable REST/JSON manner.
• Web, Javascript, mobile apps, etc.
• https://openid.net/connect/

• OpenID Provider (OP): auth as a service.
• Or Identity Provider (IDP)

• Relying Party: app that outsources user
authentication to an OP.

https://openid.net/connect/

Authorization code grant flow

Authorization code grant flow
User requests login with OIDC

Authorization code grant flow
OpenID provider authenticates user

GET https://OP/authorize?[urlencoded]
state=xxx (CSRF protection)
nonce=xxx (server-side replay protection)
scope=openid email profile
redirect_uri=https://nicesite.com/callback
response_type=code
client_id=xxx

Authorization code grant flow
OpenID provider authenticates user

GET https://OP/callback?[urlencoded]
state=xxx
code=<authorization code>

Authorization code grant flow
Backend obtains ID and access tokens

POST https://OP/oauth/token
client_id=xxx
client_secret=xxx
grant_type=authorization_code
code=<authorization code>

https://op/oauth/token

Authorization code grant flow
User is logged in

Implicit flow example

Implicit flow example

Implicit flow example

GET https://OP/authorize?[urlencoded]
state=xxx (CSRF protection)
nonce=xxx (server-side replay protection)
scope=openid email profile
redirect_uri=https://nicesite.com/callback
response_type=token id_token
client_id=xxx

Implicit flow example

GET https://OP/callback#[urlencoded]
state=xxx
token_type=Bearer
expires_in=<TTL>
access_token=<Access token>
Id_token=<ID Token>

OIDC comparison
vs other “single sign-on” mechanisms
• Reuse credentials: i.e. directory server (LDAP) or shared user DB.

• Shared credentials, but need to re-authenticate on every app..

• Smart-card based authentication
• Credentials are the smart card… applications must support it.

• “Token” based solutions. Obtain token, token is the identity
• Cookies for applications hosted in the same domain (paths or subdomains).
• Kerberos or other Ticket Granting Ticket systems, very specific.

• Facebook connect / Log in with Facebook.
• Identity + provide access to user data.
• You must trust Facebook. Censorship?

• …

OIDC comparison
vs SAML (Security Assertion Markup Language)
• SAML is SOAP and XML Format – OIDC is RESTful+JSON.
• SAML: Service Provider (SP) and Identity Provider (IDP).

• OIDC: Repying Party (RP) and OpenID Provider (OP).
• In SAML, SP is always a website.

• OIDC can be web, mobile or native applications.
• In SAML, the assertion is a signed XML document with subject information, issuer

and authentication event.
• OIDC has the equivalent ID Token, a signed JSON document.

• SAML back-channel is rarely used. SP and IDP don’t need connectivity!
• In OIDC, normally RP uses back channel to retrieve information from OP.

• SAML: No implicit user consent (can be hard-coded by developer).
• OIDC, built on top of OAuth2, provides built-in authorization layer.

OIDC comparison
vs OpenID 1.0 and OpenID 2.0
• OpenID Connect != OpenID (different standards)
• OIDC is 3rd generation of OpenID (deprecated)
• In OpenID, identifier is an URL or XRI:

• i.e. http://alice.openid.example.org
• OpenID works on Oauth 1.0a + extensions
• OpenID provides RP identity “certificate”
• 2005: OpenID 1.0

• Formerly Yadis (Yey another distributed ID system)
• 2007: OpenID 2.0

• Google, Microsoft, Paypal, Facebook, MySpace…
• February 2014: OpenID Connect

http://alice.openid.example.org/

OIDC comparison
vs OAuth 2.0
• OAuth is for authorization, not authentication
• Pseudo-auth using OAuth is possible

• But dangerous!
• OAuth provides an access “key”
• Identity certificate vs your apartment key
• Does the key prove identity?

• In OIDC, the key provides access to a locker
containing the identity information

• “Abusing” standard OAuth2 protocol:
• plus Identity Token
• plus UserInfo Endpoint

OIDC comparison
vs JWT (JSON Web Tokens)
• JWT is a standard for signed /

encrypted data with JSON
payload.

• Either private secret or
public/private key.

• Payload contains claims (i.e.:
“user logged in as admin”).

• Token provided to a client,
then client can use that token
as a prove.

• Used in OIDC as ID Token

Why use OIDC?
• Interoperability: different implementations get well together.
• Security: reliable, gets you out of the risky business of managing passwords.

• PKI increases security and delegates responsibility to “expert” service providers.
• Ease of deployment: tons of libraries ready to use.
• Flexibility
• Wide support of devices

Which one should I use?
• Mobile applications à Use OIDC
• Writing a new app? à Use OIDC
• App only supports SAML, and IDP supports SAML? à Use SAML

Testing and debugging OIDC
• Some useful tools to help with debugging:

• https://openidconnect.net/
• https://oidcdebugger.com/
• Browser network console
• Curl

• Prerequisites
• OIDC provider
• Client ID (and secret for code flow) registered in the provider
• Redirect URIs allowed in the provider
• Client knows OP endpoint (Autodiscover via /.well-known/openid-configuration)

• Demo: code flow example using https://openidconnect.net/
• Demo: implicit flow using https://oidcdebugger.com/

https://openidconnect.net/
https://oidcdebugger.com/
https://openidconnect.net/
https://oidcdebugger.com/

Creating an OIDC client
• Multiple OIDC libraries: http://openid.net/developers/libraries/
• Certified RP libraries:

• C Apache mod_auth_openidc
• C#
• Erlang
• JavaScript
• PHP
• Python
• Ruby
• Typescript

• Certified Servers and Services, provider libraries, etc.

Uncertified RP libraries:
• Elixir
• Erlang
• Go
• Haskell
• Java
• JavaScript
• Python
• …

http://openid.net/developers/libraries/

Python + flask OIDC login
Dependencies and initialization

Python + flask OIDC login
Handle the OP callback

Python + flask OIDC login
Trigger the OIDC authentication

Python + flask OIDC login
Dashboard with user info (requires authentication)

Real world example
Dealing with complex authentication scenarios

Real world example
Apps supporting OIDC “out of the box”
• Kubernetes

• https://github.com/kubernetes/client-go/tree/master/plugin/pkg/client/auth/azure
• Group based per-namespace permissions.

• Harbor
• No groups at the time of implementation. Now available.
• Auto-onboarding issues, user could set its own username à PR merged.
• Configurable username claim à PR merged.

• Jenkins (via plugin)

• Atlassian Suite (Confluence + Jira + Bitbucket) – SSO plugins

https://github.com/kubernetes/client-go/tree/master/plugin/pkg/client/auth/azure

Real world example
Nginx Application Gateway
• Nginx Plus

• auth_jwt module, provides auth via JWT token.
• Njs module. Some JS for OIDC dance and get token.
• https://www.nginx.com/blog/authenticating-users-existing-applications-openid-connect-nginx-plus/
• https://github.com/nginxinc/nginx-openid-connect

• Open-Source version
• It lacks njs and auth_jwt modules.
• Lua module and some Lua code can do the trick.
• https://github.com/zmartzone/lua-resty-openidc

• How to handle non-browser sessions (i.e. git ssh clone)?
• Some magic with JS or Lua modules to keep a list of whitelisted Ips
• OIDC logging code triggers whitelisting. Not perfect… good enough.

https://www.nginx.com/blog/authenticating-users-existing-applications-openid-connect-nginx-plus/
https://github.com/nginxinc/nginx-openid-connect
https://github.com/zmartzone/lua-resty-openidc

Real world example
Non OIDC tools
• Not all apps supported OpenID connect
• Some workarounds were needed.
• Let Nginx authenticate the user and use RUT (Remote User Token)

headers to provide username to the application.
• https://help.sonatype.com/repomanager3/system-configuration/user-

authentication/authentication-via-remote-user-token

• Onboarding?
• Use API to check and onboard if required.

https://help.sonatype.com/repomanager3/system-configuration/user-authentication/authentication-via-remote-user-token

Other caveats
• User migration
• Non-standard claims in ID Token

• https://openid.net/specs/openid-connect-core-1_0.html#ScopeClaims
• Email might be required (i.e. Sysdig Monitor / Secure)

• TLS certificates. To trust or not to trust?
• Single Sign Off / Log out

• Logout in one tool should logout every other tool?
• https://openid.net/specs/openid-connect-session-1_0.html

• Less secure?
• Credential leakage can expose multiple applications
• Use additional security measures: MFA, smartcards, etc.

• Implicit grant flow
• Not safe and not easy.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-session-1_0.html

The good, the bad and the ugly
• OpenID Connect is modern, easy to use and to implement, interoperable,

flexible, widely supported, and can improve security and make your users
happier, while reducing help desk incidents.

• Delegating credentials management to a single service can raise trust and
availability (single point of failure) issues. Additional measures should be
applied to protect credentials, like MFA.

• Some implementations and standarizations are not yet perfect, and some
applications might not yet support OIDC. Some hacks and workarounds
might be needed. But we like challenges, don’t we?

Q & A

