

Hyperconverged Kubernetes Storage

OpenEBS 101

Speakers

 kiranmova

@kiranmova

Kiran Mova

Chief Architect
Co-Founder
MayaData Inc

 Vishnu itta

@ivishnuvardhan

Vishnu Vardhan Itta

Director of Engineering
MayaData Inc

https://twitter.com/kiranmova
https://twitter.com/ivishnuvardhan

About MayaData

● Code is marketing
● Contributing in CNCF ecosystem
● 19 CKAs & growing

● 4X yr/yr growth in container pulls
● #1 CNS in trial per CNCF survey
● Rapidly becoming the defacto

standard for stateful workloads
on Kubernetes

Agenda

● K8s for Stateful

● Container Attached Storage (CAS)

● OpenEBS Storage Engines

● K8s as Data Layer - End User Stories

K8s for Stateful Workloads

● Native interfaces for connecting workloads
(Pods) to Persistent Volumes (PVs).

● Dynamic provisioning of PV via Persistent
Volume Claim (PVC) and Storage Class (SC).

● More abstraction through community
efforts around Persistent Volumes (PV) and
Persistent Volume Claims (PVC) and
Container Storage Interface (CSI)

● CSI to handle vendor specific needs and
avoid wildfire of “volume plugins” or
“drivers” in K8s main repo

In-tree
Volumes

Flex
Volumes

CSI

PV
Volume

PVC

SC

External
Provisioner

Topology AwarePools

Data Source

K8s for Stateful : Can’t I Just?

db1
db2

Redis

Micro
service 1 Micro

service 2

UI

REST API

CACHE
service db n

Of course you can. And you do.
However you lose so many
benefits of moving to
Kubernetes.

Most workloads just use
Direct Attached Storage
instead.

CSI

A shared storage system is a complex
monolithic distributed system built before

Kubernetes

These systems have DBs for metadata
They have provisioning systems

They have retry & other logic

They take all the IO, mix it together, and do
their best

Designed when storage media was slow
and apps were NOT resilient

CNCF 2019 Survey

Container Attached
Storage most evaluated

Convway’s Law - Culture Shift

Convway’s Law - Culture Shift

Steven Bower at Bloomberg
○ Moved to Kubernetes in order to simplify

and standardize their environments
○ CNCF end user of the year 18/19
○ Running dozens of different stateful

workloads at scale
○ Believes in open source
○ Not about cost savings - about agility
○ Everything loosely coupled
○ Teams are autonomous and full stack
○ Does not use shared storage
○ Uses OpenEBS - different flavors

https://www.youtube.com/watch?v=0CEHN6ECaPs

https://www.youtube.com/watch?v=z_LbRfDKPvE

http://www.youtube.com/watch?v=z_LbRfDKPvE&t=1520
https://www.youtube.com/watch?v=0CEHN6ECaPs
https://www.youtube.com/watch?v=z_LbRfDKPvE

Convway’s Law - Data

loosely coupled teams

loosely coupled
applications

loosely coupled data

Data Gravity

● As data grows — it has the tendency to
pull applications towards it (gravity)

● Everything will evolve around the sun
and it dominates the planets
○ Latency, throughput, IO blender

○ If the sun goes super nova — all your apps
circling it will be gone instantly

● Some solutions involve replicating the
sun towards some other location in the
“space time continuum”
○ It works — but it exacerbates the problem

Evolving Hardware

Evolving Hardware

● NVMe is a protocol that dictates
how bits are moved between the
CPU/device but also -- between
devices

○ Its origin can be found with Infi Band
used in HPC for many years (1999)

● NVMe over Fabrics extends the
protocol over TCP, RDMA, FC, virtio

● A complete replacement of the
SCSI protocol which goes back all
the way to 1978

block layer

SCSI

SAS

SAS

SCSI

NVMe

device device

App App

 kernel bypass

Software Paradigm Shift

● High number of system calls
have a huge impact on
performance

● Two solutions to mitigate this:
○ Making use of huge pages
○ Try to do as much as possible in

user space
● Meta languages, Go, Rust,...

● io_uring a new interface added
to the kernel to “catch up” with
the high speed devices, poll
mode FTW.

Rewrite! Resistance is Futile

● Packets come in at a very high rate, single CPU 100% how to scale?
○ CPU has ~67ns per packet @3GHz

● Solution: spread across multiple cores which requires locking
○ Locks are expensive and locks are in memory which is 70-40ns away?

● Amdahl's law starts to dominate the performance envelope
● Context switches and system calls have gotten far more expensive

post spectere meltdown
● What we seem to need are lockless queues that scale per core

○ Poll mode drivers
● Partial rewrites are inevitable, the rewards are high

○ ScyllaDB, VPP, Open vSwitch,

CAS : Motivation

Conway’s Law1
Per workload,

per team
Shared

everything

Costly lock-in 2 Process mismatch &
100x more dynamism

3
Traditional
processes

Automated
Kube - Ops

instructions

External know-how required for traditional storage 4

vs
vs

SRE

Container native

Under-utilized K8s investment!5

Data
gravity

Storage sys.instructions

External storage

CAS : Conway’s Law for storage

SRE

db1

db2

Redis

Micro service 1

Micro service 2

UI

REST API

CACHE service
db n

Every workload & team its own system

Different engines for different workloads

Built on Kubernetes for Kubernetes

Delivers the benefits of for data
- No lock-in
- Open source
- Runs consistently everywhere

- Any underlying cloud or disk
or SAN

AND the right architecture for NVMe

CAS : Early Adopters

Hyperconverged and Local

The vast majority of applications are able to better handle failover and
replication than a block level device.

Instead of introducing another distributed system into an already
complex environment, OpenEBS's Local PVs allow us to leverage fast
local storage.

Additionally, by leveraging ZFS we are able to have encryption at rest
for all of our workloads, compression, and the peace of mind of a COW
based file system. OpenEBS has allowed us to not introduce a
complicated distributed system into our platform.

The adoption has been smooth and completely transparent to our
end users.

Kubernetes for DBaaS

Storage Engines for every Workload

OpenEBS 101

Distributed Workloads

PVC 2

Local PV 2

PVC 1

Local PV 1

PVC 3

Local PV 3

App (R2)App (R1) App (R3)

Hostpath

Block Device

Local ZFS / LVM

OpenEBS Local PV Variants

LocalPV HostPath

Node 3

LocalPV Device

Node 1

ZFS LocalPV

Node 2 ZFS Pool

Application
Namespace

Internet

Physical Hard disks

WaitForFirst
Consumer

Persistent
Volume for
Application

Create LocalPV
StorageClass

XFS or EXT:

NDM knows if
disk is in use

Creates
volume in
user
defined
ZFS pool

STS with
Node
Selectors

Persistent (non-distributed) Apps

PV (Target)

Replica 1 Replica 2 Replica 3

PVC

App

Jiva/Longhorn

cStor

Mayastor

OpenEBS - Replicated Storage

iSCSI Target
(PV)

cStor Replica Pods

OpenEBS Namespace

Application
Namespace

Internet

Physical Hard Disks

cStor Replica
Deployments

(nodeSelectors)

Stateful
Application
Running
Inside Pod in
Kubernetes

Persistent
Volume for
Application

Create a cStor
StorageClass

cStor
Replica Pod
with 8
Disks

OpenEBS - cStor

Application
Namespace

iSCSI OS Driver

cStor replica
Pods

iSCSI Target
(PV)

OpenEBS Namespace

cStor custom block
protocol

● Aggregates hard disks in the replica pods
● Exposes volumes at iSCSI target / controller svc
● Attaches volume to application worker node
● Mounts filesystem and binds to application pod

OpenEBS - Mayastor

New
 Storage Engine for
 Performance with Features.

Same
 Declarative,
 Composable Data Plane with
 Developer Friendly Mgt and
 API-Driven Orchestration.

sequential read 2-way mirror:
(groupid=0, jobs=1): err= 0:
pid=32573: Thu Feb 13 21:23:41
2020
 read: IOPS=79.2k,
BW=309MiB/s
(324MB/s)(9280MiB/30002msec)

sequential write 2-way mirror:
(groupid=1, jobs=1): err= 0:
pid=32651: Thu Feb 13 21:23:41
2020
 read: IOPS=77.8k,
BW=304MiB/s
(319MB/s)(9115MiB/30002msec)

random write 2-way mirror:
(groupid=2, jobs=1): err= 0:
pid=32718: Thu Feb 13 21:23:41
2020
 write: IOPS=47.6k,
BW=186MiB/s
(195MB/s)(5582MiB/30003msec)

random read 2-way mirror:
(groupid=0, jobs=1): err= 0:
pid=1020: Thu Feb 13 21:23:41
2020
 read: IOPS=76.9k,
BW=301MiB/s
(315MB/s)(9017MiB/30002msec)

Low latency for
NVME, flexible
enough to work
with anything

Data Protection

db1

db2

Redis

Micro service 1

Micro service 2

UI

REST API

CACHE service
db n

C
SI

C
SI

DM
aa

S

S3 storage

● Per workload storage
● Per workload backup
● Per workload management
● Seamless integration w Optane &

bare metal & CSI provisioned clouds
and legacy storage

Q/A

● https://openebs.io

● https://docs.openebs.io

● https://github.com/openebs/openebs

● Kubernetes Slack #openebs

● Kubernetes Slack #openebs-dev

● https://github.com/openebs/openebs/blob/master/ADOPTERS.md

● https://www.meetup.com/Data-on-Kubernetes-community/

https://openebs.io
https://docs.openebs.io
https://github.com/openebs/openebs
https://github.com/openebs/openebs/blob/master/ADOPTERS.md
https://www.meetup.com/Data-on-Kubernetes-community/

Architecture

Cluster
Components

OpenEBS Operator

NDM Operator
Storage Manager(s)
(CSI Controller)

NDMStorage (CSI)
Agent

Others (Velero, Director..)

Node
Components

Node n)Node 1)

NDMStorage (CSI)
Agent

Others (Velero, Director..)

Others(Velero,
Director, …)

Data Engines Data Engines

Architecture

Kubernetes Cluster
node2node1

Pod

Stateful
Workload
(DB, etc)

cStor
(iSCSI)
Target

Rep-1 Rep-2

Setup OpenEBS

PV

Cluster
admin

(1) node-disk-manager,
 provisioner,
 cstor operator,..

(2) SPC=>StoragePool(s)

(3) StorageClass

OS

Developer

Using OpenEBS

(4) Pod with OpenEBS PVC

(5) PV

cStorPool

OS

cStorPool

node3

Rep-3

OS

cStorPool

Disk Disk Disk Disk Disk Disk

PVC

Architecture

Kubernetes Cluster
node2node1

Pod

Stateful
Workload
(DB, etc)

Setup OpenEBS

PV1

DevOps
admin

(1) node-disk-manager,
 provisioner,

(2) StorageClass

OS

Developer

Using OpenEBS

(3) StatefulSet with PVC

(4) PV OS

node3

OS

Dir: PV1 Dir: PV2

Pod

Stateful
Workload
(DB, etc)

PV2

PVC PVC

/mnt/openebs/mnt/openebs /mnt/openebs

Performance Benchmarking

Kubernetes Cluster Details
● m5ad.2xlarge on AWS (8 cores, 32GiB RAM, 300GiB NVMe SSD)
● Kubernetes 1.16.8
● Amazon Linux 2

FIO and pgbench
● Fio profiles for Postgres were generated with pgbench

and blktrace.
● Fio command to replay the profile.

https://github.com/openebs/performance-benchmark/tree/master/benchmark-tool

https://github.com/openebs/performance-benchmark/tree/master/benchmark-tool

Performance Benchmarking

● Tuning the nodes for performance - as
part of your Terraform / Ansible

● Test for scale - number of workloads
● Day 2 Operations in Progress
● Noisy neighbour / Load
● Chaos

Performance Benchmarking

(*) Default settings without iSCSI/cStor tunables
(**) NVMeoF offers 2-3x more performance.

Performance Benchmarking

IOPS Throughput (MiB/s)

Read Write Read Write

OpenEBS Hostpath 10200 16300 79.9 252

OpenEBS Device 9042 14500 71 224

OpenEBS cStor* 1383 2214 10.9 34.3

OpenEBS Mayastor** 10200 16200 79.5 251

(*) Default settings without iSCSI/cStor tunables
(**) NVMeoF offers 2-3x more performance.

