
Notary v2

•Steve Lasker – Microsoft

• Justin Cormack – Docker

Outstanding Issues, Working Session

v2



• Steve Lasker
• @stevelasker

• PM Architect at Microsoft

• OCI – TOB Member

• OCI Artifacts & ORAS maintainer

• Justin Cormack
• @justincormack

• Engineer at Docker

• Notary maintainer

• CNCF ToC member

Who are we?



• Registry-native
Signatures and artifacts co-located for easier and secure management

• Secure
Attesting to its authenticity and/or certification
No trust on first use, no implicit permissions on rotated keys, secure private keys and PKI

• Portable
Artifacts move within and across registries supporting provenance, validation and trust

• Multi-tenant
Enable cloud providers and enterprises to easily support managed services at scale

• Offline & Air-gapped
Artifacts can be signed offline
Artifacts and signatures can be moved into air-gapped environments

• Usable
Simple commands to integrate with toolchains, supporting key hierarchies

Notary v1 does not meet these requirements

Notary v2 intends to

What: is Notary v2



1. Offline signing

2. Must not change the tag or digest, just to be signed

3. Cross cloud, on-prem and air-gapped adoption

4. Ephemeral clients

5. Multiple signatures 
• Enabling originating vendor, aggregator certification, customer validation

6. Keys secured by cloud providers key vault offering (pluggable)

7. Key acquisition: from hobbyist, open source projects, to large 
software vendors

Notary v2 Requirements



Notary v2 Workflow

Wabbit

Networks

2

Public 
Registry

Notary v2 Scope

Interoperability with other projects

ImageImage

SBoM

src

Index

Artifact Build 
Environment

1

4

Policy
Management

5

Container
Host

3

Private 
Registry

Image

SBoM

src

Index

Image

SBoM

Index

src

Docker Hub ACME Rockets

deploy

1. An entity authors content
• signs their content with their key

2. Publish to a well-known location
• May get certified by the aggregator

3. Consume the public content into an entity's private registry
• Add a verification signature, attesting to its usage in the company

4. Policy management enforces which keys can be used for deployment, even what registries 
content can be pulled from

5. Only after all signatures and policies are verified can the artifact be deployed



• How to build complex systems?
• How do we establish a model for communication?

• We want to build a house?
• What does that mean?
• What style?
• How many rooms?
• City, Suburb, Mountain, Beach?
• What style of kitchen?
• What style of bathroom?

• Enlisting expertise of the trades
• Grading contractors
• Foundation contractors 
• Framing contractors
• HVAC contractors 
• Plumbing contractors 
• Electrical contractors

Prototyping Approach

tub

tub



Prototyping Approach

Antoni Gaudí

stevelasker.blog/sketch-prototype-build/

https://stevelasker.blog/sketch-prototype-build/


• Prototyping to get closer to where we want to be

• Prototype 1
• Generic signing of content

• Supporting any content pushed to an OCI Artifacts enabled registry

• Attesting to its authenticity and/or certification

• Content copying, with signatures
• within and across registries

• Into air-gapped environments

• Looking at the key management issues, types of keys

• Registry persistence and retrieval
• An artifact?

• Different permissions?

• Further prototypes and design decisions
• TUF

• Rollback protection in a registry context

• ephemeral clients and their issues

Where are we now?



Breaking down the pieces

Artifact Signature

Registry
OCI Artifact enabled

OCI distribution-spec compliant

2

5

3

nv2 client ORAS client
1 4



• Generate an x509 Cert
• Subject CN = originating/vendor registry

Key – x509

openssl req \
-x509 \
-sha256 \
-nodes \
-newkey rsa:2048 \
-days 365 \
-subj "/CN=registry.wabbit-networks.com" \
-keyout wabbit-netowrks.key \
-out wabbit-netowrks.crt



nv2 cli

nv2 sign --method x509 \
-k wabbit-networks.key \
-r registry.wabbit-networks.com/net-monitor:v1 \
-o net-monitor.signature.json \
file:net-monitor_v1-manifest.json

docker build \
-t registry.wabbit-networks.com/net-monitor:v1 \
.

docker generate manifest \
registry.wabbit-networks.com/net-monitor:v1 > net-monitor_v1-manifest.json



{
"signed": {

"exp": 1626938793,
"nbf": 1595402793,
"iat": 1595402793,
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"digest": "sha256:3351c53952446db17d21b86cfe5829ae70f823aff5d410fbf09dff820a39ab55",
"size": 528,
"references": [
"registry.wabbit-networks.com/net-monitor:latest",
"registry.wabbit-networks.com/net-monitor :v1"

]
},

Signature

OCI Descriptor

net-monitor.signature.json

Cert References



net-monitor.signature.json

{
"signed": {

"exp": 1626938793,
"nbf": 1595402793,
"iat": 1595402793,
"mediaType": "application/vnd.oci.image.manifest.v1+json",
"digest": "sha256:3351c53952446db17d21b86cfe5829ae70f823aff5d410fbf09dff820a39ab55",
"size": 528,
"references": [
"registry.wabbit-networks.com/net-monitor:latest",
"registry.wabbit-networks.com/net-monitor :v1"

]
} ,
"signature": {

"typ": "x509",
"sig": "uFKaCyQ4MtVHemfLVq5gYZyeiClS20tksXzP7hhpeqqjCNK9DiHnoDpkq91sutLqd1o6RCxpfFVuGXy20oqRu1/ZoXXAVC3y7lS6z/wqJ4VDB

KSj/H6xyYn7pH3GE8GHR6kjFPqrGsl/OS4yYH2oNXEm9W8Pju2wC381+FCgf4LNf7k6u2Uf4Fb0/Fl40qzvr0m2Fv5pXtRY+wdJctqJb+t408VcXJkNj0U7xoOe0zU
r3l1A6xLYqjd0ZY08JBQ8FQul0Vpxrmg0Xdtwd/wEolvia48lxD1x7yphW5bFvJOTd62rOJgd4uI7jYJF3ZLmwjY+geMk5e6Wkp5OyXGjXw==",

"alg": "RS256",
"x5c": [

"MIIDmzCCAoOgAwIBAgIUFSzsIT4/pKtGzywuZWWE7ydiLBIwDQYJKoZIhvcNAQELBQAwXTELMAkGA1UEBhMCQVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdpdHMgUHR5IEx0ZDEWMB

QGA1UEAwwNKi5leGFtcGxlLmNvbTAeFw0yMDA3MjIwMzA2MTBaFw0yMTA3MjIwMzA2MTBaMF0xCzAJBgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGQxFjAUBgNVBAMMD

SouZXhhbXBsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDM0MNLy/f1SyRM0ZQu3AtJnCU3O5x8nnOeV1mySmZNr2SCqR8+jENAoKE5FrrSi2ffMnFPP/7DqGnbb9+b1nD9ucFNsI1iW7IrF/GlqOM7jJhUMNnOyatz
8mddtQgXr3SZ9bigbc/lxuVGacvi64DewoWzMFr4ZMGq8ik7aDnHryUDwXJFE+KGNbsReO1ePqKmPiLvkLG4sBTqeTuCk+Grrr5t1COujwuFWfhMjmRfq34QGqUZ3SHJYXPzOAxgV3fCmBP9IgHuSv/b1udx5Htf1BV7WlARtXfE216…"

]
}

}

Signature



• Persisted as an OCI Artifact
"config.mediaType": "application/vnd.cncf.notary.config.v2+json"

OCI Manifest
{
"schemaVersion": 2,
"config": {

"mediaType": "application/vnd.cncf.notary.config.v2+json",
"digest": "sha256:c7848182f2c817415f0de63206f9e4220012cbb0bdb750c2ecf8020350239814",
"size": 1906

},
"layers": []

}

oras push registry.wabbit-networks.com/net-monitor:v1 \
--manifest-config net-monitor.signature.json:application/vnd.cncf.notary.config.v2+json



• Key management working group is meeting on Fridays

• The prototype we just talked about uses x509
• However, x509 keys are not currently widely accessible outside large organizations

• Unlike for TLS there is less infra for keys, you can't use Letsencrypt keys for signing

• Gives a binding between org name and signature

• Can we get that via other means effectively?

• Some people want to use GPG
• Outside Debian, the web of trust is mostly dead

• Covid ends that model? Never realistically worked

• Ad hoc keys most likely, as used by TUF
• You need to define how you choose to trust keys

• Definitely not Notary v1 TOFU

• This requires configuration and work from users, so we need to make this extremely easy

• Definitely want to be able to manage keys with existing tools
• Cloud key stores, Vault, Parsec, Yubikeys

Key management



• Mapping TUF into OCI registry types
• The canonical TUF design is for a set of files in a filesystem

• The OCI registry objects have a slightly different design
• For example an OCI descriptor includes a mime type

• If we use external signature objects (not inline as in TUF) this changes the layout a little too

• This is all fine so long as it is exactly equivalent to preserve security properties

• The are several options to explore here, the main constraint is that registries tends to use 
OCI manifests for garbage collection control

• Once we have a representation, there are still more design decisions
• Scope of TUF repository: registry, org or repo?

• Notary v1 chose repo, which was a bad design

• The TUF team believe that registry is the right scope

• Some of the registry operators think that is too large

• Affects key delegations and root of trust

Prototype Roadmap



• Ongoing discussion about rollback protection

• Ephemeral machines don't have a history of the repository state, so if an 
attacker deletes history they won't notice
• Potential solution is to regularly update client base images with the repository state; the 

most generic solution but also requires work

• Another solution is to use transparency logs as a public record of the state of the world; 
there is a difficulty though in that these are easiest to use with public data, and they are
additional infrastructure that needs to be maintained outside the registry

• Ephemeral infrastructure has huge advantages, but it does impact security so 
we need to think about the consequences

More design work



• The Update Framework is concerned with updates...

• We don't have a good exposure of what updates are in a registry

• We do not tend to delete much content as it is also an archival record, and we 
want to support rollbacks and clients that have not yet updated

• So a repository will have a lot of tags in...
• There are currently 386 tags for Ubuntu in Docker Hub...

• 14.04, 16.04, 18.04, 20.04 and 20.10 and what those point to are current

• But we discourage use of latest and generic tags, and many people want immutable 
tags

• This means additional information is needed to understand what an update is, eg semver, 
or external tooling which describes the versioning

• I think we made some design mistakes here, but rectifying will be difficult

Issues about use of registry



Summary



• github.com/notaryproject

• Weekly meetings: 
• CNCF Calendar www.cncf.io/community/calendar/

• Meeting minutes and recorded videos (link in the calendar)

How to find us

Justin Cormack
Engineer 

Docker
justin.cormack@docker.com

@justincormack
https://www.cloudatomiclab.com/
github.com/justincormack

Steve Lasker
PM Architect

Azure Container Registries
Steve.Lasker@Microsoft.com

@SteveLasker
SteveLasker.blog
github.com/SteveLasker

http://github.com/notaryproject/
http://www.cncf.io/community/calendar/
mailto:justin.cormack@docker.com
https://www.cloudatomiclab.com/
https://github.com/justincormack
mailto:Steve.Lasker@Microsoft.com
https://stevelasker.blog/
https://github.com/stevelasker



