Migrating to OpenTelemetry from a Custom
Distributed Tracing Pipeline

Francis Bogsanyi

Q) shopify

Historical architecture

What do you need for tracing?

- Instrumentation (in Ruby for Shopify)
- Context propagation
- Collection

- Backend / Ul — storage, search, rendering

What instrumentation existed in 2016?
. ZipkinforRuby (abandoned)

- OpentipkinforRuby (nascent)

&d No obvious trace instrumentation candidate for Ruby

What context propagation existed in 2016?

- AECraecnarent
- Zipkin B3 multi-header

- X-Cloud-Trace-Context

What backends/Uls existed in 20167?
. Jaeger

- Zipkin

- Datadog

- Google Stackdriver Trace — free, with API rate limits

- - Instrumentation loosely inspired by OpenTracing
. X-Cloud-Trace-Context for propagation

- Direct export to Datadog agent and StackDriver

Welcome to Distributed Tracing!

What is this?

This is a PR that will augment your application with distributed tracing. In other words, it will allow you to look at individual requests and
follow your application’s interactions with external services, such as database, cache, HTTP calls, and will also follow background jobs and
annex those interactions to the request that originated them.

Wait, what?!?

Distributed Tracing aims to make your application’s interactions with outside services more transparent. This means that every interaction
your application has with an external service (be it a database, cache, HTTP API, or potentially others) will be recorded. Inside a request’s
lifecycle (and any jobs it originates), you will be able to find:

 When the operation started (relative to when the request hit your application) and how long it took

e Details about the operation:
o For databases, you'll see a query

o For Redis/Memcached calls you'll see the actual commands

o For HTTP, you'll see the method, hostname and response code

Out-of-the-box, this gem supports:

e Ruby on Rails (instruments SQL, Cache and View rendering)

e Memcached (memcached and dalli gems)

» Sidekiq
e Resque
e Net:HTTP

» ElasticSearch (if you use the shopify-elasticsearch gem)

* Rack middleware that you can plug in on non-Rails applications.

For even more details on what Distributed Tracing is, check out our project page.

What does it look like?

Waterfall Span Performance

Service

v | storefront-renderer
v ’ storefront-renderer
| storefront-renderer

storefront-renderer

Operation Oms 163ms, 327ms 490ms 653ms

StorefrontController.render 356ms

mysql.execute_multi 3ms |
redis.query_cache.read 3ms |
SPAN

Span ID 165081d9ea9bl0a3
Parent ID 1b45c890a823943d

OPERATION

storefront-renderer Today at 5:06:44 PM
HTML::ProductsController about 3 hours ago
.render

Trace ID c49e52301d4£6046d357e9a9154a3cld

Performance Summary

B Application 22.5% W Garbage Collection 8.4%
Database 69.1%

Global Tags

What’s wrong with this architecture?

- Custom instrumentation
- Custom agent

- Custom translators

What’s wrong with this architecture?

- CoreDNS? Nginx?
- Rust? Node? Python? Java?
- Unnecessary redundancy, impedance mismatch

&d Commoditization

Jaeger

OpenCensus
Zipkin

Trace Client
Library

OpenCensus
Prometheus

Statsd

Metric Client
Library

D Queui Y D | Tail sampiing | X
8 ueuing _8 8 al sarrip Ing -8
= Retry = = Percentiles =
D ® ® @
7 n 7 7
OpenCensus OpenCensus
Agent Collector

Jaeger

Prometheus
Zipkin

Destination 1

Datadog
Omnition

Stackdriver

Destination2

apiVersion: vl
kind: ConfigMap
metadata:
name: trace-proxy-control
data:
proxy—-percent: "100"

vo lumeMounts:

— name: trace-proxy-control

mountPath: /config/trace-proxy
vo Lumes:
— name: trace-proxy—-control
configMap:
name: trace-proxy-control

What’s wrong with this architecture?

° _u_H_H_e_ee_S_pﬁl"\l FQI‘IIII’\A’\I’\I\\I hﬂAﬁhﬁQ aallal atal vala
Ul y I\/\JUIIUUIIUY, P UUUUUUU K™, @ QU] |

&d Commoditization

OpenCensus + OpenTracing = OpenTelemetry

HOW STANDARDS PROUFERATE:
(<EE: A/C (HARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)
¥7?! RiDICULOLS!
WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S

SITUATION:
THERE ARE

https://xkcd.com/927/

Steps toward OpenTelemetry

Steps toward OpenTelemetry

- OpenCensus collector => OpenTelemetry collector

Steps toward OpenTelemetry

- OpenCensus collector => OpenTelemetry collector

- trace-proxy => OpenTelemetry agent

pipelines:
traces:

receivers: [opencensus, jaeger, zipkin, shopifyl
processors:
— memory_limiter
— resource_ labeler
— batch
— queued_retry
exporters: [opencensus]

Steps toward OpenTelemetry

- OpenCensus collector => OpenTelemetry collector
- trace-proxy => OpenTelemetry agent

- OpenTelemetry Rust &

Steps toward OpenTelemetry

- OpenCensus collector => OpenTelemetry collector
- trace-proxy => OpenTelemetry agent
- OpenTelemetry Rust

.+ OTLP exporter from custom instrumentation library

=& §?

@ Agent troubles
®@ Breaking changes in collector, including metrics

@ OTLP

What’s next for tracing at Shopify?

+ OTLP in production
- Remove the agent?
- OpenTelemetry Ruby in production

- OpenTelemetry all the things

What’s next for tracing at Shopify?

- W3C traceparent
- Collector pool per region rather than per cluster

- Custom analysis backend using BigQuery

Lessons learned

- Migration takes a long time, especially in the early days
- Working backward from the end of the pipeline 7%
- Fine-grained traffic migration from old to new pipeline /%

- Trace instrumentation and collection is commoditized

Q) shopify

