
Migrating Transactions
Worth Billions of 💰 to
Service Mesh With No
Downtime

Shishir Joshi

/@shishir127

Mahendra Kariya

/@mahendrakariya

https://twitter.com/mahendrakariya

https://www.youtube.com/watch?v=eYb--4iOSCY

https://www.youtube.com/watch?v=eYb--4iOSCY&feature=youtu.be

https://www.youtube.com/watch?v=eYb--4iOSCY

https://www.youtube.com/watch?v=eYb--4iOSCY&feature=youtu.be

About

● Leading digital payments provider in Indonesia

● Has largest MAU in Indonesia since Q4 2017

● Processed $7.8 billion in transactions in 2019

● Accepted at 300,000+ online and offline merchants

● Has integrations with 28+ financial institutions

● 100M+ transactions every month

● First e-money payment option on Google Play Store in Indonesia

About

● A few hundred developers

● Multiple Kubernetes Clusters

● 150+ microservices

● 130M+ internal API calls

● 100+ deployments every week

● REST as well as gRPC services

● Services written in Golang, Java, Clojure, Ruby

Before introducing the service mesh

SVC A pods

SVC A VMs

Service B

SVC A pods

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

Consul svc
Discovery

SVC A VMs

Pod 1
Pod 2
VM 1

Service B

Service discovery using Consul

SVC A pods

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

Consul svc
Discovery

SVC A VMs

Pod 1
Pod 2
VM 1

Service B

Service discovery using Consul

With Envoy used as a reverse proxy

SVC A pods

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

SVC A
Proxies

SVC A VMs

Proxy 1
Proxy 2

Service B

Reverse Proxies

SVC A

Pod 1
Pod 2
VM 1
VM 2

xDS Server

With Envoy used as a reverse proxy

SVC A pods

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

SVC A
Proxies

SVC A VMs

Proxy 1
Proxy 2

Service B

Reverse Proxies

SVC A

Pod 1
Pod 2
VM 1
VM 2

xDS Server

With Envoy used as a reverse proxy

SVC A pods

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

SVC A
Proxies

SVC A VMs

Proxy 1
Proxy 2

Service B

Reverse Proxies

SVC A

Pod 1
Pod 2
VM 1
VM 2

xDS Server

Challenges with this setup
● Fronting Envoy needs to be deployed for every service

Challenges with this setup
● Fronting Envoy needs to be deployed for every service

● Fronting Envoy versions drifted over time

Challenges with this setup
● Fronting Envoy needs to be deployed for every service

● Fronting Envoy versions drifted over time

● Latency in syncing Envoy with Consul

Challenges with this setup
● Fronting Envoy needs to be deployed for every service

● Fronting Envoy versions drifted over time

● Latency in syncing Envoy with Consul

● Terminated pod didn’t get deleted from Consul

Challenges with this setup
● Fronting Envoy needs to be deployed for every service

● Fronting Envoy versions drifted over time

● Latency in syncing Envoy with Consul

● Terminated pod didn’t get deleted from Consul

● Overhead of ensuring client libraries are updated

Challenges with this setup
● Fronting Envoy needs to be deployed for every service

● Fronting Envoy versions drifted over time

● Latency in syncing Envoy with Consul

● Terminated pod didn’t get deleted from Consul

● Overhead of ensuring client libraries are updated

● Consul was no longer the single source of truth for service discovery

Challenges with this setup
● Fronting Envoy needs to be deployed for every service

● Fronting Envoy versions drifted over time

● Latency in syncing Envoy with Consul

● Terminated pod didn’t get deleted from Consul

● Overhead of ensuring client libraries are updated

● Consul was no longer the single source of truth for service discovery

● Concept of canary deployment was broken

Business Expansion Plans
● Different data localization and processing regulations in different countries

Business Expansion Plans
● Different data localization and processing regulations in different countries

● Same set of services and fronting Envoys need to deployed across regions

Business Expansion Plans
● Different data localization and processing regulations in different countries

● Same set of services and fronting Envoys need to deployed across regions

● Cross region and cross DC traffic needs to be handled securely

○ Certificate management

○ mTLS

○ Ingress Gateways

Business Expansion Plans
● Different data localization and processing regulations in different countries

● Same set of services and fronting Envoys need to deployed across regions

● Cross region and cross DC traffic needs to be handled securely

○ Certificate management

○ mTLS

○ Ingress Gateways

● Rate limiting

Business Expansion Plans
● Different data localization and processing regulations in different countries

● Same set of services and fronting Envoys need to deployed across regions

● Cross region and cross DC traffic needs to be handled securely

○ Certificate management

○ mTLS

○ Ingress Gateways

● Rate limiting

● Quota management

What does service mesh solve?
● Handles the client side load balancing and service discovery

What does service mesh solve?
● Handles the client side load balancing and service discovery

● Deprecate Consul for service discovery

What does service mesh solve?
● Handles the client side load balancing and service discovery

● Deprecate Consul for service discovery

● Better telemetry

What does service mesh solve?
● Handles the client side load balancing and service discovery

● Deprecate Consul for service discovery

● Better telemetry

● Provides better traffic splitting abilities

What does service mesh solve?
● Handles the client side load balancing and service discovery

● Deprecate Consul for service discovery

● Better telemetry

● Provides better traffic splitting abilities

● Eliminates Envoy fronting version drifts

What does service mesh solve?
● Handles the client side load balancing and service discovery

● Deprecate Consul for service discovery

● Better telemetry

● Provides better traffic splitting abilities

● Eliminates Envoy fronting version drifts

● Rate limiting, distributed tracing, transparent mTLS, etc.

What does service mesh solve?
● Handles the client side load balancing and service discovery

● Deprecate Consul for service discovery

● Better telemetry

● Provides better traffic splitting abilities

● Eliminates Envoy fronting version drifts

● Rate limiting, distributed tracing, transparent mTLS, etc.

● Reduces overhead and cost of infrastructure management

● Client libraries with service discovery and load balancing.

● Keeping client libraries and Envoy updated is tedious. Faced issues because of bugs in older
versions.

● Setup needs to be replicated across regions. Infra needs to be minimalistic.

● Service mesh solves these issues and provides more. Can build better tooling on top.

Recap

What service mesh should we choose?

🤔

Why Istio?
● We wanted an Envoy based service mesh, because of our prior experience with Envoy

Why Istio?
● We wanted an Envoy based service mesh, because of our prior experience with Envoy

● We had Envoy filters which we ideally wanted to avoid porting

Why Istio?
● We wanted an Envoy based service mesh, because of our prior experience with Envoy

● We had Envoy filters which we ideally wanted to avoid porting

● Didn’t want to hand roll the control plane

Why Istio?
● We wanted an Envoy based service mesh, because of our prior experience with Envoy

● We had Envoy filters which we ideally wanted to avoid porting

● Didn’t want to hand roll the control plane

● First class support for Envoy filters

Why Istio?
● We wanted an Envoy based service mesh, because of our prior experience with Envoy

● We had Envoy filters which we ideally wanted to avoid porting

● Didn’t want to hand roll the control plane

● First class support for Envoy filters

● Features of a service mesh we were interested in were best supported by Istio e.g. policy

management

Requirements for introducing service mesh
● Support seamless traffic flow

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

Requirements for introducing service mesh
● Support seamless traffic flow

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

● Transparency for callee services calling services migrated to Istio

Requirements for introducing service mesh
● Support seamless traffic flow

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

● Transparency for callee services calling services migrated to Istio

● Support for staggered migration to Istio

Requirements for introducing service mesh
● Support seamless traffic flow

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

● Transparency for callee services calling services migrated to Istio

● Support for staggered migration to Istio

● Robust rollback strategy in case of any failures

Requirements for introducing service mesh
● Support seamless traffic flow

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

● Transparency for callee services calling services migrated to Istio

● Support for staggered migration to Istio

● Robust rollback strategy in case of any failures

● Detect any possible performance issues with Istio for our use-case while minimizing impact

Case: Within Istio Mesh

K8s (Current GoPay) K8s Istio Enabled

A pods

B pods VS
for B

K8s svc
Discovery

svc-a: ep for A
svc-b: ep for B

Consul svc
Discovery

K8s
svc

for B

Legend:

K8s pods / VMs

K8s service / Headless
service / Ingress

Istio virtual service

Proxy connection

Traffic Flow

Case: From non-Istio Env to Istio Mesh

K8s (Current GoPay) K8s Istio Enabled

Consul svc
Discovery

svc-a:
ingress-gateway

K8s svc
Discovery

svc-a: ep for A

A pods
Ingress

Gateway
B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service / Ingress

Istio virtual service

Proxy connection

Traffic Flow

Case: From non-Istio Env to Istio Mesh

K8s (Current GoPay) K8s Istio Enabled

Consul svc
Discovery

svc-a:
ingress-gateway

K8s svc
Discovery

svc-a: ep for A

A pods
Ingress

Gateway
B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service / Ingress

Istio virtual service

Proxy connection

Traffic Flow

Case: From non-Istio Env to Istio Mesh

K8s (Current GoPay) K8s Istio Enabled

Consul svc
Discovery

svc-a:
ingress-gateway

K8s svc
Discovery

svc-a: ep for A

A pods
Ingress

Gateway
B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service / Ingress

Istio virtual service

Proxy connection

Traffic Flow

Case: Istio Mesh to non-Istio Env

K8s + VMs (Current GoPay) K8s Istio Enabled

A pods

K8s svc
Discovery

svc-a: ep for A

Consul svc
Discovery

svc-b: pods
for B

Kafka VMs

B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service /Ingress

Istio virtual service

Proxy connection

Traffic Flow

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

Case: Istio Mesh to non-Istio Env

K8s + VMs (Current GoPay) K8s Istio Enabled

A pods

K8s svc
Discovery

svc-a: ep for A

Consul svc
Discovery

svc-b: pods
for B

Kafka VMs

B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service /Ingress

Istio virtual service

Proxy connection

Traffic Flow

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

Case: Istio Mesh to non-Istio Env

K8s + VMs (Current GoPay) K8s Istio Enabled

A pods

K8s svc
Discovery

svc-a: ep for A

Consul svc
Discovery

svc-b: pods
for B

Kafka VMs

B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service /Ingress

Istio virtual service

Proxy connection

Traffic Flow

Legend:

K8s pods / VMs

K8s service / Headless
service

Istio virtual service

Proxy connection

Traffic Flow

Case: Istio Mesh to non-Istio Env

K8s + VMs (Current GoPay) K8s Istio Enabled

A pods

K8s svc
Discovery

svc-a: ep for A

Consul svc
Discovery

svc-b: pods
for B

Service
Entry

for
KafkaKafka VMs

B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service / Ingress

Istio virtual service

Proxy connection

Traffic Flow

Case: Istio Mesh to non-Istio Env

K8s + VMs (Current GoPay) K8s Istio Enabled

A pods

K8s svc
Discovery

svc-a: ep for A

Consul svc
Discovery

svc-b: pods
for B

Service
Entry

for
KafkaKafka VMs

B Pods

Legend:

K8s pods / VMs

K8s service / Headless
service / Ingress

Istio virtual service

Proxy connection

Traffic Flow

● We chose Istio.

● We wanted seamless rollout and rollback and a staggered rollout option.

● Primarily had 3 cases to handle during rollout

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

● We used existing service discovery where possible with Istio to make the rollout seamless .

Recap

How we rolled out?

How we rolled out?

1

● Supported just a few basic
functionalities of Istio

● Core team initially
migrated a few critical
services along with devs

● Ironed out any issues
based on feedback from
devs

How we rolled out?

1 2

● Supported just a few basic
functionalities of Istio

● Core team initially
migrated a few critical
services along with devs

● Ironed out any issues
based on feedback from
devs

● Created robust
documentation around
how migrate

● Established SOPs and
processes

● Started letting devs do the
migration, with active
support from core team

How we rolled out?

1 2 3

● Supported just a few basic
functionalities of Istio

● Core team initially
migrated a few critical
services along with devs

● Ironed out any issues
based on feedback from
devs

● Created robust
documentation around
how migrate

● Established SOPs and
processes

● Started letting devs do the
migration, with active
support from core team

● Migration in autopilot
mode

● Started enabling more
Istio features (like mTLS,
rate limiting, etc.)

Automation + Documentation FTW!
● Created Helm charts with support for Istio

resources

Automation + Documentation FTW!
● Created Helm charts with support for Istio

resources

● Added support for rolling back to
non-Istio environment in the Helm charts

Automation + Documentation FTW!
● Created Helm charts with support for Istio

resources

● Added support for rolling back to
non-Istio environment in the Helm charts

● Automated validation of Istio resources
configuration in CI pipelines

Automation + Documentation FTW!
● Created Helm charts with support for Istio

resources

● Added support for rolling back to
non-Istio environment in the Helm charts

● Automated validation of Istio resources
configuration in CI pipelines

Monitoring and Alerting
● Internal Prometheus + Grafana based setup for monitoring and alerting

Monitoring and Alerting
● Internal Prometheus + Grafana based setup for monitoring and alerting

● Cortex from long term metrics storage and horizontal scalability

Monitoring and Alerting
● Internal Prometheus + Grafana based setup for monitoring and alerting

● Cortex from long term metrics storage and horizontal scalability

● Separate dashboards for Istio control plane and data plane

Monitoring and Alerting
● Internal Prometheus + Grafana based setup for monitoring and alerting

● Cortex from long term metrics storage and horizontal scalability

● Separate dashboards for Istio control plane and data plane

● Default dashboard and alerts for any service migrated to Istio

Monitoring and Alerting
● Internal Prometheus + Grafana based setup for monitoring and alerting

● Cortex from long term metrics storage and horizontal scalability

● Separate dashboards for Istio control plane and data plane

● Default dashboard and alerts for any service migrated to Istio

● Service Graph visualization for services fully on Istio

Example Metrics
Control Plane

● xDS Latency

● xDS Error Rate

● Resource usage for control plane pods

● Cert related errors

● Number of out of sync sidecars

● Istio sidecar version drift

Example Metrics
Control Plane

● xDS Latency

● xDS Error Rate

● Resource usage for control plane pods

● Cert related errors

● Number of out of sync sidecars

● Istio sidecar version drift

Data Plane

“Golden Signals” of monitoring

● Latency

● Traffic

● Errors

● Saturation

Challenges Faced
DISCLAIMER - Some of these are specific to our environment and use-cases

● Getting devs comfortable with the new environment & new concepts

Challenges Faced
DISCLAIMER - Some of these are specific to our environment and use-cases

● Getting devs comfortable with the new environment & new concepts

● Confusion with Helm charts for Istio installation vs using istioctl

Challenges Faced
DISCLAIMER - Some of these are specific to our environment and use-cases

● Getting devs comfortable with the new environment & new concepts

● Confusion with Helm charts for Istio installation vs using istioctl

● Understanding service entries

Challenges Faced
DISCLAIMER - Some of these are specific to our environment and use-cases

● Getting devs comfortable with the new environment & new concepts

● Confusion with Helm charts for Istio installation vs using istioctl

● Understanding service entries

● Using Helm to deploy instead of generating templates

● 3 phases of rollout. Improvements in each phase targeted towards empowering a self-serve
migration

● Used staggered migration to discover any issues or limitations

● Created documentation and a guide for migration

● Added automation for validations in CI pipelines

Recap

Current State of Rollout

1 2 3

● Supported just a few basic
functionalities of Istio

● Core team initially
migrated a few critical
services along with devs

● Ironed out any issues
based on feedback from
devs

● Created robust
documentation around
how migrate

● Established SOPs and
processes

● Started letting devs do the
migration, with active
support from core team

● Migration in autopilot
mode

● Started enabling more
Istio features (like mTLS,
rate limiting, etc.)

1 2

Thank You Community!

Thank You Community!

Big Thanks to

● Neeraj Poddar

● Shriram Rajagoplan

Thank you

Shishir Joshi

@shishir127

Mahendra Kariya

@mahendrakariya

