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About

● Leading digital payments provider in Indonesia

● Has largest MAU in Indonesia since Q4 2017

● Processed $7.8 billion in transactions in 2019

● Accepted at 300,000+ online and offline merchants

● Has integrations with 28+ financial institutions

● 100M+ transactions every month

● First e-money payment option on Google Play Store in Indonesia



About

● A few hundred developers

● Multiple Kubernetes Clusters

● 150+ microservices

● 130M+ internal API calls

● 100+ deployments every week

● REST as well as gRPC services

● Services written in Golang, Java, Clojure, Ruby
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Challenges with this setup
● Fronting Envoy needs to be deployed for every service

● Fronting Envoy versions drifted over time

● Latency in syncing Envoy with Consul

● Terminated pod didn’t get deleted from Consul

● Overhead of ensuring client libraries are updated

● Consul was no longer the single source of truth for service discovery

● Concept of canary deployment was broken
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Business Expansion Plans
● Different data localization and processing regulations in different countries

● Same set of services and fronting Envoys need to deployed across regions

● Cross region and cross DC traffic needs to be handled securely

○ Certificate management

○ mTLS 

○ Ingress Gateways

● Rate limiting

● Quota management
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What does service mesh solve?
● Handles the client side load balancing and service discovery

● Deprecate Consul for service discovery

● Better telemetry

● Provides better traffic splitting abilities

● Eliminates Envoy fronting version drifts

● Rate limiting, distributed tracing, transparent mTLS, etc.

● Reduces overhead and cost of infrastructure management



● Client libraries with service discovery and load balancing.

● Keeping client libraries and Envoy updated is tedious. Faced issues because of bugs in older 
versions.

● Setup needs to be replicated across regions. Infra needs to be minimalistic.

● Service mesh solves these issues and provides more. Can build better tooling on top.

Recap



What service mesh should we choose?

🤔
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Why Istio?
● We wanted an Envoy based service mesh, because of our prior experience with Envoy

● We had Envoy filters which we ideally wanted to avoid porting

● Didn’t want to hand roll the control plane

● First class support for Envoy filters

● Features of a service mesh we were interested in were best supported by Istio e.g. policy 

management
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Requirements for introducing service mesh
● Support seamless traffic flow

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

● Transparency for callee services calling services migrated to Istio

● Support for staggered migration to Istio

● Robust rollback strategy in case of any failures

● Detect any possible performance issues with Istio for our use-case while minimizing impact
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● We chose Istio.

● We wanted seamless rollout and rollback and a staggered rollout option.

● Primarily had 3 cases to handle during rollout 

○ Within the mesh

○ From inside the mesh to outside world

○ From outside world to inside the mesh

● We used existing service discovery where possible with Istio to make the rollout seamless .

Recap
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Monitoring and Alerting
● Internal Prometheus + Grafana based setup for monitoring and alerting

● Cortex from long term metrics storage and horizontal scalability

● Separate dashboards for Istio control plane and data plane

● Default dashboard and alerts for any service migrated to Istio

● Service Graph visualization for services fully on Istio
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Example Metrics 
Control Plane

● xDS Latency

● xDS Error Rate

● Resource usage for control plane pods

● Cert related errors

● Number of out of sync sidecars

● Istio sidecar version drift

Data Plane

“Golden Signals” of monitoring 

● Latency

● Traffic

● Errors

● Saturation
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Challenges Faced
DISCLAIMER - Some of these are specific to our environment and use-cases

● Getting devs comfortable with the new environment & new concepts

● Confusion with Helm charts for Istio installation vs using istioctl

● Understanding service entries

● Using Helm to deploy instead of generating templates



● 3 phases of rollout. Improvements in each phase targeted towards empowering a self-serve 
migration

● Used staggered migration to discover any issues or limitations

● Created documentation and a guide for migration

● Added automation for validations in CI pipelines

Recap



Current State of Rollout

1 2 3

● Supported just a few basic 
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● Core team initially 
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based on feedback from 
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● Created robust 
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how migrate

● Established SOPs and 
processes

● Started letting devs do the 
migration, with active 
support from core team

● Migration in autopilot 
mode

● Started enabling more 
Istio features (like mTLS, 
rate limiting, etc.)
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