
Dibyo Mukherjee, @_dibyom, Google
Andrea Frittoli, @blackhip76, IBM

Mario meets the Robocat:
Lessons from Dogfooding Tekton

Agenda ● What is Tekton ?

● Mario’s Plumbing

● Tekton CI

● Demo

● Future Work

What is Tekton ?

Tekton

Tekton is a powerful and flexible open-source framework for creating CI/CD systems, allowing developers to build, test, and

deploy across cloud providers and on-premise systems.

Governed by the Continuous Delivery Foundation
Contributions from Google, Red Hat, Cloudbees, IBM, Pivotal and many more

Tekton Goals

Tekton standardizes CI/CD tooling and processes across vendors, languages, and

deployment environments. It works well with Jenkins, Jenkins X, Skaffold, Knative,

and many other popular CI/CD tools.

Standardization

Maximum Flexibility
Tekton abstracts the underlying implementation so that you can choose the build,

test, and deploy workflow based on your team’s requirements.

Built In Best Practices
Tekton lets you create CI/CD systems quickly, giving you scalable, serverless, cloud

native execution out of the box.

Tekton Projects

Building Blocks
Pipelines: standardized definitions for building CI/CD
pipelines such as Tasks, Pipelines, and Steps
Triggers: Run pipelines from webhook events.

Reusable CI/CD Definitions
Catalog and Hub host a variety of reusable task definitions.

Tooling
Dashboard - a web UI for Tekton
tkn - a CLI for interacting with Tekton
Operator - manage Tekton installation and upgrades.

Experiments
DSLs, Results storage and querying, Image formats, supply
chain security, Git and polling operators etc.

Tekton Pipelines

Step
Run commands in a container with volumes, env vars, etc

Task
A list of steps that run sequentially in the same pod

Pipeline
A graph of tasks with inputs and outputs executed in a
certain order

TaskRun and PipelineRun
An invocation of a task or pipeline with inputs and outputs

Tekton Triggers

EventListener
Listen and process incoming events

Interceptors
Filter and validate incoming events

Trigger Binding
Extract params from incoming events

Trigger Template
An invocation of a pipeline with inputs and outputs

Mario’s Plumbing

Plumbing

… « the system of pipes, tanks, fittings, and other apparatus required for the water supply, heating, and sanitation
in a building. »

For us this means, all tools and configuration files for the testing and automation needs of Tekton:

● Continuous integration system

● release setup

● test infrastructure

● scripts (for the CI, tests, release, infrastructure)

● GitHub issues and pull-request management (labels, /lgtm, …)

● …

In the beginning,

● Use Prow, a k8s based CI/CD tool used by

Kubernetes, Knative, etc.

● Share scripts and containers with Knative

● Use infrastructure from Google Cloud

Dogfooding: The Beginning

First steps in Dogfooding

● Release Tekton using Tekton

● Setup dedicated cluster for

experimentation

● Integrate Tekton Pipelines as a Prow agent

Meeting the Robocat

● Nightly releases for Tekton projects

● Nightly builds for infra containers

● Continuous deployment of Tekton releases, configuration, and other resources

● Automated GitHub org management using Peribolos and Triggers

Tekton CI testing Tekton CI testing
Tekton CI testing...

Tekton based CI

Overlays and bindings
● Common interface to Pipelines

Conditions

● Skip unnecessary CI Jobs

Tasks

● Run CI Jobs

Cloud Events

● Trigger Sync back to GitHub

Testing the test pipelines

Testing CI Changes:

● Trial and error? No!

Motivation:

● No access to the CI Cluster

● Reduce need for own infra

● Troubleshooting

Solution:

● Deploy isolated CI from trusted PR

● Forward GitHub Event as Cloud Event

● Annotations + Trigger Bindings

Demo

Fixing our pipes
a.k.a Future Work

So, What did we Learn?

We made all the mistakes!

● Verify your inputs

● Don't override your last release

● Automation helps here

There is a lot of YAML

● Lots of boilerplate

● Kustomize helps somewhat

● Maybe, DSLs in the future?

Testing changes to CI setup

● Local testing is hard to do

● Setting up pipelines

Debuggability/Tracing

● Using Labels + standard k8s tooling

● UI Integration would be nice

Automate infra setup:

● Refresh cluster after security incident

● Manual changes make this hard

Not everything needs to be in a Pod

● Terraform, Ansible for seeding infra

● Custom Tasks

Document, document, document!

Pipes we’re Building

Using Task Results in Finally

-> TEP#0004

Notifications

-> Cloud Events Based.

Skip / Simple Conditionals

-> TEP#0007

Metrics, Tracing, Debugging
-> TEP#NNNN

Task Hooks, Switch and Loops
-> Under discussion

Tekton OCI Bundle
-> TEP#0005

...and more!

Custom Tasks

-> TEP#0002

Trigger CRD

-> TEP#NNNN

Event Listener as Knative Service

-> TEP#008

Ephemeral Credentials
-> and GitHub App!

Logs and Test Results:
● Log parsing
● Test result dashboard, flake analysis

On CI itself:
● Use more Tasks from the Catalog
● “Depends-on” for cross-repo testing
● E2E Tests as Tekton pipelines
● Cloud neutral tests
● Monitoring of CI Services
● /meow!

Come and Join Us
We’re on tektoncd.slack.com!
To Join: https://bit.ly/2D2vDqh

Thank you !

Image credits: Christie Wilson (@bobcatwilson)

Links & References

● Tekton: https://tekton.dev

● Tekton on GitHub: https://github.com/tektoncd

● Tekton Community: https://github.com/tektoncd/community

● Tekton Friends: https://github.com/tektoncd/friends

● CDF: https://cd.foundation/, https://github.com/cdfoundation

● Plumbing Repo: https://github.com/tektoncd/plumbing

● K8s Test-Infra: https://github.com/kubernetes/test-infra/

https://tekton.dev
https://github.com/tektoncd
https://github.com/tektoncd/community
https://github.com/tektoncd/friends
https://cd.foundation/
https://github.com/cdfoundation
https://github.com/tektoncd/plumbing
https://github.com/kubernetes/test-infra/

