
Yaroslav Skopets, Tetrate.io

Making Envoy Contributions
Feasible for Everyone

Envoy TLDR

● a network proxy
● that runs alongside applications
● to provide them with common features
● in a platform agnostic manner

Envoy Insight

● can see every request received or made by
application

Envoy Opportunity

Could we reuse Envoy ?
● to learn from the actual traffic
● efficiently
● flexibly
● easily

Envoy Extensibility (Native)

Native Envoy extensions:

● developed in C++
● statically linked into Envoy binary
● imply custom builds of Envoy
● overall, a lot of investment and

commitment upfront

Can we do better ?

WebAssembly TLDR

● low-level code format
● for safe and efficient execution
● in a sandboxed environment

WebAssembly USE

● applications developed using a regular
programming language

● but compiled into WebAssembly code

Envoy Extensibility (WebAssembly)

+

WebAssembly-based Envoy extensions:

● developed in Rust, AssemblyScript, (Tiny)Go,
C/C++, etc

● loaded/unloaded on demand
● offer less capabilities than native selves

Sounds interesting. Let’s give it a try!

Challenge

Context:
● microservice-based architecture
● REST API + OpenAPI Specs
● Contract First API Development

Questions:
● Are API specs complete and up-to-date ?
● Do implementations match API specs ?

OPEN
{ API }

Experiment

Requirements:
1. validate requests against API Spec
2. make violations noticeable (metrics)

Let’s develop an Envoy extension for that:
● ad-hoc
● experimental
● disposable

OPEN
{ API }

AssemblyScript TLDR

● subset of TypeScript syntax
● statically typed
● garbage collected
● compiled into WebAssembly code

AssemblyScript TLDR

● NOT a JavaScript
● CAN’T reuse JavaScript libraries
● MIGHT reuse some TypeScript libraries

Overall, feels like TypeScript

AssemblyScript WHY

● complexity of the solution ==
complexity of the problem

● familiar syntax
● familiar toolbox (npm)
● productive development cycle

Extension Model

Walkthrough: Getting Started

class ApiValidator extends HttpFilter {

 constructor() { super(); }

}

Walkthrough: Data model

class ApiSpec {

 operations: Array<Operation>

}

class Operation {

 method: string

 path: string

}

Walkthrough: Configuration

class ApiValidator extends HttpFilter {

 private spec: ApiSpec

 constructor(config: string) {

 super();

 this.spec = ApiSpec.parse(config);

 }

}

Walkthrough: Request validation

class ApiValidator extends HttpFilter {

 onExchangeComplete(): void {

 let method = context.getRequestHeader(":method");

 let path = context.getRequestHeader(":path");

 if (!this.spec.contains(method, path)) {

 log.warn("unknown API: " + method + " " + path);

 }

 }

}

Walkthrough: Test

...

starting main dispatch loop

...

wasm log api_validator : unknown API: GET /orders

wasm log api_validator : unknown API: GET /orders/1

wasm log api_validator : unknown API: GET /orders/1/items

wasm log api_validator : unknown API: GET /orders/1/items/2

...

Expected Envoy output:

Walkthrough: Metrics

class ApiValidator extends HttpFilter {

 onExchangeComplete(): void {

 ...

 if (!this.spec.contains(method, path)) {

 Stats.counter("api_validator.violations_total").inc();

 }

 }

}

Walkthrough: Test

$ curl -s http://localhost:9901/stats | grep api_validator

api_validator.violations_total: 4

Expected Envoy stats:

Envoy Community

● give it a try
● share feedback
● join us to build idiomatic Envoy SDKs for

Rust, AssemblyScript, (Tiny)Go, etc

Resources

Source code:
https://github.com/yskopets/kubecon2020

Envoy w/ WebAssembly support:
https://github.com/envoyproxy/envoy-wasm

Envoy WebAssembly ABI:
https://github.com/proxy-wasm/spec

https://github.com/yskopets/kubecon2020
https://github.com/envoyproxy/envoy-wasm
https://github.com/proxy-wasm/spec

