
Kubernetes on cgroup v2
Giuseppe Scrivano

During the talk

Brief introduction of Linux cgroups

How Kubernetes uses cgroups

Introduce cgroup v2

How we got to have cgroup v2 support in Kubernetes

What are cgroups?

Cgroups are a kernel feature to restrict and monitor system resources usage of a
group of processes

Different specialized subsystems for each kind of resource

They are hierarchical, each cgroup is restricted by the ancestor nodes

Accessible from user space through a file system interface

How do we use them?

Cgroups are used by containers to solve problems like:

Limit the container to use only two cpu cores

Deny the container access to a particular device

Give a container double CPU time than another

Know how much memory the container is using

History

Cgroup v1 developed at Google and merged into Linux 2.6.24 (24th Jan 2008)

Cgroup v2 officially released with Linux 4.5 (13th Mar 2016)

Kubernetes Enhancement Proposal (PR #1370) accepted in February 2020

Kubernetes 1.19 is the first release with cgroup v2 support

kernel version cgroup v1 controllers added

2.6.24 (Jan 2008) cpu, cpuacct, cpuset

2.6.25 memory

2.6.26 devices

2.6.28 freezer

2.6.29 netcls

2.6.33 blkio

2.6.39 perf_event

3.3 net_prio

3.5 hugetlb

4.3 pids

4.11 (April 2017) rdma

kernel version cgroup v2 controllers added

4.5 (March 2016) io, memory, pids

4.11 perf_event, rdma

4.15 cpu

5.0 cpuset

5.2 freezer

5.6 (March 2020) hugetlb

Cgroups v1

Cgroup v1

Group of different controllers

Each controller handles a single kind of resource

Each controller is configured separately from the others

/ sys / f s /cgroup

blkio cpu ,cpuacc t c p u s e t dev i ce s f r e e z e r h u g e t l b m e m o r y net_cls ,net_pr io per f_even t p i d s

.. .

Cgroup v1

Cgroup have a hierarchical structure

Resources can be splitted further in the children cgroups

A thread can belong to a different cgroup in each hierarchy

/ sys / f s /cgroup

blkio cpu ,cpuacc t c p u s e t dev i ce s f r e e z e r h u g e t l b m e m o r y net_cls ,net_pr io per f_even t p i d s

.. A B

C

D

Cgroup API

There are no syscalls or ioctls

Fully controlled via the file system

Cgroup v1 mounts

The cgroupfs virtual file system exposes all the API to the cgroups

Each controller must be mounted separately

Usually it is already mounted under /sys/fs/cgroup

$ grep cgroup /proc/mounts

tmpfs /sys/fs/cgroup tmpfs ro,seclabel,nosuid,nodev,noexec,mode=755 0 0

cgroup /sys/fs/cgroup/systemd cgroup rw,seclabel,nosuid,nodev,noexec,relatime,xattr,name=systemd 0 0

cgroup /sys/fs/cgroup/cpu,cpuacct cgroup rw,seclabel,nosuid,nodev,noexec,relatime,cpu,cpuacct 0 0

cgroup /sys/fs/cgroup/memory cgroup rw,seclabel,nosuid,nodev,noexec,relatime,memory 0 0

cgroup /sys/fs/cgroup/cpuset cgroup rw,seclabel,nosuid,nodev,noexec,relatime,cpuset 0 0

cgroup /sys/fs/cgroup/freezer cgroup rw,seclabel,nosuid,nodev,noexec,relatime,freezer 0 0

cgroup /sys/fs/cgroup/net_cls,net_prio cgroup rw,seclabel,nosuid,nodev,noexec,relatime,net_cls,net_prio 0 0

cgroup /sys/fs/cgroup/perf_event cgroup rw,seclabel,nosuid,nodev,noexec,relatime,perf_event 0 0

cgroup /sys/fs/cgroup/blkio cgroup rw,seclabel,nosuid,nodev,noexec,relatime,blkio 0 0

cgroup /sys/fs/cgroup/pids cgroup rw,seclabel,nosuid,nodev,noexec,relatime,pids 0 0

cgroup /sys/fs/cgroup/hugetlb cgroup rw,seclabel,nosuid,nodev,noexec,relatime,hugetlb 0 0

cgroup2 /sys/fs/cgroup/unified cgroup2 rw,seclabel,nosuid,nodev,noexec,relatime,nsdelegate 0 0

Cgroup /proc files

Some information is exposed through the procfs file system

$ cat /proc/cgroups | column -t

#subsys_name hierarchy num_cgroups enabled

cpuset 4 4 1

cpu 2 6 1

cpuacct 2 6 1

blkio 8 35 1

memory 3 114 1

devices 11 61 1

freezer 5 4 1

net_cls 6 4 1

perf_event 7 4 1

net_prio 6 4 1

hugetlb 10 4 1

pids 9 69 1

$ cat /proc/$PID/cgroup

11:hugetlb:/

10:freezer:/

9:memory:/user.slice/user-0.slice/session-1.scope

8:cpuset:/

7:devices:/user.slice

6:pids:/user.slice/user-0.slice/session-1.scope

5:blkio:/

4:net_cls,net_prio:/

3:perf_event:/

2:cpu,cpuacct:/

1:name=systemd:/user.slice/user-0.slice/session-1.scope

0::/user.slice/user-0.slice/session-1.scope

Cgroup v1 file system API

Mount a cgroup controller # mount -t cgroup -omemory memory /sys/fs/cgroup/memory

Create a new cgroup # mkdir /sys/fs/cgroup/memory/new-cgroup

Set a limit # echo 1073741824 > /sys/fs/cgroup/memory/new-cgroup/memory.limit_in_bytes

Move a process PID to a cgroup # echo $PID > /sys/fs/cgroup/memory/new-cgroup/cgroup.procs

Read some stats # cat /sys/fs/cgroup/memory/new-cgroup/memory.max_usage_in_bytes

Read the processes in a cgroup # cat /sys/fs/cgroup/memory/new-cgroup/cgroup.procs

Rename a cgroup # mv /sys/fs/cgroup/memory/new-cgroup /sys/fs/cgroup/memory/different-name

Remove a cgroup (must be empty) # rmdir /sys/fs/cgroup/memory/different-name

Quality of Service classes

A QoS class is assigned to a pod

There are 3 QoS classes
Guaranteed CPU/Memory limits = CPU/Memory request

Get what they ask for

Burstable Not guaranteed but at least one CPU or Memory request

Normal priority and what they requested (inside of the burstable cgroup)
Same OOM as guaranteed

Best Effort Everything else

Get the lowest priority
First to get killed when running low on memory

OOM killer

Not strictly a cgroup feature

It is used by Kubernetes to complement cgroups

A task with a higher OOM score is killed first when there is not enough memory
available

OOM score in Kubernetes

Different OOM score for each QoS class
const (

// KubeletOOMScoreAdj is the OOM score adjustment for Kubelet

KubeletOOMScoreAdj int = -999

// KubeProxyOOMScoreAdj is the OOM score adjustment for kube-proxy

KubeProxyOOMScoreAdj int = -999

guaranteedOOMScoreAdj int = -998

besteffortOOMScoreAdj int = 1000

)

Burstable pods gets a dynamic OOM score adjustment, that is between
guaranteedOOMScoreAdj and besteffortOOMScoreAdj

When there is not enough memory available, best effort pods are likely the first to
be killed

The Kubelet and kube-proxy run almost with the highest OOM score, but still
killable

Guaranteed pods are just one level below Kubelet and kube-proxy

How the Kubelet uses cgroup v1

Cgroup are used together with the OOM score

Limit resources isolations

Monitoring

/ sys / f s /cgroup

m e m o r y ...

kubepods . s l i ce

kubepods-bes te f for t . s l i ce kubepods -burs tab le . s l i ce kubepods-pod3ccce[. . .] . s l ice [guaranteed]

kubepods-besteffor t -podc107b[. . .] . s l ice [best ef for t] . . .pods. conta iners . . .

cr io-02b41be[. . .] . scope crio-a8a3ccc2[. . .] .scope

Running containers

Monitoring

The Kubelet uses cAdvisor to monitor containers

cAdvisor reads periodically stats from each cgroup

It must understand the cgroup version used on the system

On going work to move stats reading into the runtime

Some issues with cgroup v1

Each controller must be handled separately. The flexibility of having different
hierarchies is not used in practice

Integration with some kernel subsystems, like memory, is not ideal

Delegation of a subtree to a less privileged process is not safe

No resources allocation

Inconsistencies among the different subsystems

Non atomic operations: creating, deleting, moving must be done for each
controller

The OOM is not cgroup aware, processes from different containers/cgroups can be
killed at the same time

Cgroups v2

How we got here?

Fedora 31, released October 2019, was the first distro to enable cgroup v2 by
default

crun was the first OCI runtime to support cgroup v2

Podman uses crun by default on Fedora

For running Kubernetes, it is necessary to switch to cgroup v1

Hugetlb controller still missing in Linux when I’ve started working on cgroup v2

https://github.com/containers/crun
https://github.com/containers/podman

Why do we need cgroup v2?

Cgroup v1 is considered legacy, no new features will be added

Resources allocation is possible

Cgroup aware OOM killer

Delegation to less privileged processes is possible and safe

Cgroup namespace enabled for unprivileged containers

Cgroup v2

All the controllers are under the same hierarchy
/ sys / f s /cgroup

kubepods . s l i ce

kubepods-bes te f for t . s l i ce kubepods-podb0e30a2d[. . .] . s l i ce

kubepods-besteffor t -pod40ff2481[. . .] . s l ice

cr io-6266a7[. . .] . scope cr io-c06053[. . .] . scope

crio-d551f3[. . .] .scope crio-98fcbd[. . .] .scope

Delegation to less privileged processes is safe

Some controllers, e.g. devices, require eBPF that is a privileged operation

Cgroup v2 controllers

The controllers are a property of the cgroup

/
+ c p u s e t + c p u + i o + m e m o r y + h u g e t l b + p i d s

foo
+ c p u + m e m o r y

b a r
+ c p u s e t + c p u + i o + m e m o r y + h u g e t l b + p i d s

b a z
+ p i d s

b a r
+ c p u + m e m o r y

foo
+ m e m o r y

A cgroup can use a controller only if it is enabled in the parent cgroup

A controller is enabled or disabled through the cgroup.subtree_control file
echo +cpu > /sys/fs/cgroup/parent/cgroup/cgroup.subtree_control

echo -cpu > /sys/fs/cgroup/parent/cgroup/cgroup.subtree_control

Cgroup v2 controllers

cgroup v1 cgroup v2 can be
unprivileged

blkio io ✓

cpu,cpustat cpu ✓

cpuset cpuset ✓

devices with eBPF ✗

freezer freezer ✓

net_cls,net_prio with eBPF ✗

hugetlb hugetlb ✓

perf_event perf_event ✓

pids pids ✓

rdma rdma ✓

Some other differences:

Not everything that is available in
cgroup v1 is present in cgroup v2
(e.g. cpuacct.usage_percpu).

Cgroup v2 only features (e.g.
Pressure Stall Information).

Different semantic (e.g. swap
memory limits).

Different ranges (e.g. cpu.shares
uses [2-262144], cpu.weight uses
[1-10000]).

Cgroup v2 rules

Processes/threads can be added only to leaf nodes.

Before a cgroup can use a controller, the controller must be enabled for all the
parent cgroups

Originally all the threads in a process had to be in the same cgroup. Relaxed in
newer Linux versions.

The nsdelegate mount option makes delegation safe. More restrictions apply in the
cgroup namespace.

Pressure Stall Information metrics

Cgroup v2 gives new metrics to detect resource shortages

Metrics for IO, CPU and memory resources

Percentage of wall time spent waiting for a resource for some or all processes

Record it for the last 10 seconds, 1 minute and 5 minutes

Also show the accumulated time in microseconds

$ cat /sys/fs/cgroup/system.slice/io.pressure

some avg10=0.00 avg60=0.00 avg300=0.00 total=5461793

full avg10=0.00 avg60=0.00 avg300=0.00 total=3646744

Memory Protection

Memory is configured with 4 files

memory.min It will never be reclaimed

memory.low Soft protection, memory below this
threshold is reclaimed only if there is nothing
reclaimable in other cgroups

memory.high Memory usage throttling, the kernel tries
to keep the memory usage below this limit

memory.max Hard limit, the OOM killer is invoked on
the cgroup if trying to use more memory than this limit

Cgroup namespace

Without a cgroup namespace
cat /proc/self/cgroup

0::/system.slice/run-rbeb7749cb8ad4be486f4ba0b59a81e50.scope

Within a cgroup namespace
unshare -C cat /proc/self/cgroup

0::/

A cgroup namespace turns the
current cgroup into the cgroup root

While in a cgroup namespace, it is not
possible to move processes out of it

crio-d551f3[. . .] .scope

/sys / f s /cgroup

kubepods . s l i ce

kubepods-podb0e30a2d[. . .] . s l i ce

crio-98fcbd[. . .] .scope
unshare(CLONE_NEWCGROUP)

/

in i t . scope

Open Container Initiative containers

OCI runtime specifications

The OCI runtime is responsible for the final container setup

Lowest level in the stack, just above the kernel

A JSON file config.json is used to describe the container

OCI runtime specifications

The resources object specifies how to configure cgroups.

{

"resources": {

"memory": {

"limit": 2097152000,

"swap": 2097152000

},

"cpu": {

"shares": 716,

"quota": 70000,

"period": 100000

},

"pids": {

"limit": 1024

},

"hugepageLimits": [

{

"pageSize": "1GB",

"limit": 0

},

{

"pageSize": "2MB",

"limit": 0

}

]

}

}

Each resource is mapped to the cgroup file system

2097152000 → /sys/fs/cgroup/memory/$CGROUP/memory.limit_in_bytes
2097152000 → /sys/fs/cgroup/memory/$CGROUP/memory.memsw.limit_in_bytes

716 −→ /sys/fs/cgroup/cpu/$CGROUP/cpu.shares
70000 −→ /sys/fs/cgroup/cpu/$CGROUP/cpu.cfs_quota_us
100000 −→ /sys/fs/cgroup/cpu/$CGROUP/cpu.cpu.cfs_period_us

1024 → /sys/fs/cgroup/pids/$CGROUP/pids.max

0 −→ /sys/fs/cgroup/hugetlb/$CGROUP/hugetlb.1GB.limit_in_bytes

0 −→ /sys/fs/cgroup/hugetlb/$CGROUP/hugetlb.2MB.limit_in_bytes

OCI runtime specifications

The OCI runtime specifications are designed for cgroup v1

Some issues with cgroup v2:

Different file names

Different ranges for the values

The specs are not extendable

Cannot support new features

OCI runtime specifications

The OCI runtime specifications are designed for cgroup v1

Some issues with cgroup v2:

Different file names ✓

Different ranges for the values ✓

The specs are not extendable ✗ Proposal for cgroup v2 support

Cannot support new features

https://github.com/opencontainers/runtime-spec/pull/1040

Conversion from cgroup v1 to cgroup v2

crun implemented by to get started

Attempt a conversion from the cgroup v1 configuration to cgroup v2

Example
The cpu.shares value is converted from [2-262144] to the range [1-10000] accepted for cpu.weight.

A container engine, unless it is using directly the cgroup, won’t need to generate a
different OCI configuration

Now runc performs the same conversions

What is next?

What is next?

Extend OCI to support new cgroup v2 features

Take advantage of the cgroup v2 memory allocation

Use the new Pressure Stall Information metrics

Enable running Kubernetes without root privileges

Nested Kubernetes?

	Cgroups v1
	Cgroups v2
	Open Container Initiative containers
	What is next?

