
Sarah Khalife & Grant Griffiths

Kind-ly Validating your
K8s Apps Automatically per PR

Sarah Khalife
@skhalife

✷ 11 months @ GitHub
✷ Previously Cloud Apps & Platform Engineer @ GE
✷ Focused on inner source, automation, and the SDLC
✷ For fun, I enjoy volleyball, travel, and the beach! 🏐✈🏝

Field Solutions Engineer

GitHub

@_skhalife

Grant Griffiths

✷ 1.5 years @ Portworx
✷ Previously Data Services & Platform Engineer @ GE
✷ Contributor to SIG Storage and Kubernetes-CSI
✷ For fun, I like climbing, soccer, and surfing $⚽🌊

Software Engineer

@ggriffiths
@griffithsgrant

Overview
kind
Automation & CI
Testing
Takeaways

⃖

Overview
kind
Automa-on & CI
Tes0ng
Takeaways

⃖

Overview
kind
Automa-on & CI
Tes0ng
Takeaways

⃖

Overview
kind
Automa0on & CI
Tes-ng
Takeaways

⃖

Overview
kind
Automation & CI
Testing
Takeaways ⃖

Overview Overview
kind

Automa'on & CI
Tes'ng

Takeaways

⃖

Motivation

What are the challenges?
- Collaboration needs to be transparent, consistent,

and rigorous
- Testing k8s application varies per developer

environment
- Time and resource consuming to constantly spin

up k8s clusters

We want to be able to collaborate successfully in both
our internal & open source projects.

What we’ll cover

● Simple set of steps to create and automate a
homogenous testing environment

● Use kind to automatically run e2e tests across a
common environment

● Automate the creation of this environment per
pull request and run the test suite before merging

kind Overview
kind

Automa0on & CI
Tes'ng

Takeaways

⃖

What is kind?

● Kubernetes in Docker
● Similar in usage to Minikube and k3s
● Great for local testing
● kind.sigs.k8s.io

https://kind.sigs.k8s.io/

How to use kind

Could not be any easier!

➜ ~ brew install kind
➜ ~ kind create cluster
Creating cluster "kind" ...
✓ Ensuring node image (kindest/node:v1.18.2) 🖼
✓ Preparing nodes 📦
✓ Writing configuration 📜
✓ Starting control-plane 🕹
✓ Installing CNI 🔌
✓ Installing StorageClass 💾

Set kubectl context to "kind-kind"
You can now use your cluster with:

kubectl cluster-info --context kind-kind

Not sure what to do next? 😅 Check out https://kind.sigs.k8s.io/docs/user/quick-start/

kind vs. others

kind - quick, easy to deploy, low barrier to entry, great for testing
k3s - even quicker, minimal version of k8s
minikube - single node k8s, low barrier to entry

https://brennerm.github.io/posts/minikube-vs-kind-vs-k3s.html

https://brennerm.github.io/posts/minikube-vs-kind-vs-k3s.html

Automation & CI
Overview

kind
Automa'on & CI

Tes0ng
Takeaways

⃖

Goals

Run our validation test on new code
changes
- Reduce amount of bugs
- Validate before it hits prod

Block merge to prod if tests have
failed
- Don’t introduce broken code into

main branch
- Hold dev accountable to fix issue

Setup a pre-configured environments
when testing
- Catch problems with your

application logic systematically
- Maintain consistency in results

Automate everything with event
triggers
- Increase frequency of test runs
- Repeatable and generally more

efficient

Start kind with GitHub Actions

name: "Create cluster using kind"
on: [pull_request]

jobs:
kind:

runs-on: ubuntu-latest
steps:
- uses: engineerd/setup-kind@v0.4.0

github.com/marketplace/actions/kind-kubernetes-in-docker-action

https://github.com/marketplace/actions/kind-kubernetes-in-docker-action

Automation workflow for demo

Dev introduces
code change,
and creates a

PR

Build &
Publish

Merge PR
when test
pass ✅

k8s v1.16

k8s v1.17

k8s v1.18kind cluster
creation &
k8s testing

Testing Overview
kind

Automa0on & CI
Tes-ng

Takeaways
⃖

When to use integration & e2e tests

● Dependency between apps
● Code interacts with k8s objects
● May not always be needed

○ resource & time intensive
○ unit tests can cover business logic

Sample problem - CSI Driver Testing

● Used by Kubernetes-CSI team
github.com/kubernetes-csi/csi-release-tools

● Basic flow
○ Create kind cluster
○ Deploy a sample CSI driver & sidecars
○ Run tests

http://github.com/kubernetes-csi/csi-release-tools

Sample problem - Portworx e2e testing

● Portworx - Enterprise Storage Platform
for k8s

● Openstorage - the open source control
plane for Portworx

● Test a feature called Portworx Security
● Prevents unauthenticated users from

accessing the platform
● We will test using the Portworx CSI Driver

🔐

https://emojipedia.org/locked-with-key/

Example - Portworx e2e Test

Automation steps
1. Create kind cluster

k8s cluster - user space

k8s cluster - kube-system space

Example - Portworx e2e Test

Portworx CSI Driver Pod

Automation steps
1. Create kind cluster
2. Deploy Portworx CSI

Driver

k8s cluster - user space

k8s cluster - kube-system space

Example - Portworx e2e Test

Portworx CSI Driver Pod

Token
Secret

Automation steps
1. Create kind cluster
2. Deploy Portworx CSI

Driver
3. Create token secret

k8s cluster - user space

k8s cluster - kube-system space

Example - Portworx e2e Test

Portworx CSI Driver Pod

Token
Secret

Automation steps
1. Create kind cluster
2. Deploy Portworx CSI

Driver
3. Create token secret
4. Create storage class

Storage
Class

k8s cluster - user space

k8s cluster - kube-system space

Example - Portworx e2e Test

Portworx CSI Driver Pod

Token
Secret

Automation steps
1. Create kind cluster
2. Deploy Portworx CSI

Driver
3. Create token secret
4. Create storage class
5. Create persistent

volume

Storage
Class

Persistent
Volume

k8s cluster - user space

k8s cluster - kube-system space

Example - Portworx e2e Test

Portworx CSI Driver Pod

Token
Secret

Automation steps
1. Create kind cluster
2. Deploy Portworx CSI

Driver
3. Create token secret
4. Create storage class
5. Create persistent

volume
6. Create pod with

persistent volume
MySQL Pod

Storage
Class

Persistent
Volume

k8s cluster - user space

k8s cluster - kube-system space

Example - Portworx e2e Test

Portworx CSI Driver Pod

Token
Secret

Test: Token secret
reference must be valid
in order to create and
use a Portworx volume

MySQL Pod

Storage
Class

Persistent
Volume

k8s cluster - user space

k8s cluster - kube-system space

❌ Test failed

Example - Portworx e2e Test

Portworx CSI Driver Pod

Token
Secret

Test: Token secret
reference must be valid
in order to create and
use a Portworx volume

MySQL Pod

Storage
Class

Persistent
Volume

k8s cluster - user space

k8s cluster - kube-system space

✅ Test passed

Live Demo

Takeaways Overview
kind

Automa'on & CI
Tes0ng

Takeaways ⃖

Automate based on event
triggers - decide what type of
events best suit the job you
want to run:

- Should I run this test on
every push to main?

- When should I deploy my
app to GKE?

No more manual work

name: Docker Image CI

on:
push:
branches: [main]

pull_request:
branches: [main]

name: Build and Deploy to GKE

on:
release:
types: [created]

Set up your workflow -
decide what jobs you need to
run:

- I need to build my docker
image & push it to DTR

- I need a kind job to spin up
k8s & run my test

- kind needs docker build to
succeed.

No more manual work

jobs:
build:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v2
- name: Build the Docker image
run: make docker-build-osd

jobs:
kind:
needs: build
runs-on: ubuntu-latest
strategy:
matrix:
k8s-version: ['v1.16', 'v1.17', 'v1.18']

Setup Protected branches -
choose the rules that should
apply:

- Require code reviews
- Have status checks

based on workflows
- Disable force push

No more manual work

Recap

Dev introduces
code change,
and creates a

PR

Build &
Publish

kind cluster
creation &
k8s testing

k8s v1.16

k8s v1.17

k8s v1.18

Merge PR
when test
pass ✅

Event
Trigger:

Pull Request

Kicks off first
build job

Matrix Build:
3 parallel jobs

Protected
Branch rules set

Lessons Learned

● Breaking down the “build” and “kind”
jobs in two separate ones

● Triggering e2e test workflows only on
PRs to the master branch

● Use matrix builds to run your tests to
validate against multiple k8s versions

● Test against the same image in all
workflows

WHAT

● Simplified builds, cleaner
workflows, & more efficient runs

● Will otherwise be inefficient,
using up unnecessary resources

● Concurrent testing with same
automation script

● Saves time and resources, can
always audit and refer back to
specific image

WHY

Q&A

