
Derek Argueta

Building a Service Mesh
from Scratch: The Pinterest Story



Pinterest Traffic Engineering

Client CDN/DNS Ingress Load 
Balancing

Front-end 
Applications

Traffic Engineering Domain



Pinterest Ingress Load Balancing

Cloud Load 
Balancer HTTP Proxies

Front-end 
Service

Front-end 
Service

Front-end 
Service

CDN



Preparing Envoy
• Fast & Robust Deployments
• CI/CD
• Monitoring dashboards & alerts prepared
• Multiple Envoy extensions implemented to match existing ingress behavior 
precisely

• Upstream pull requests



The Great mTLS Migration

• Started with Java Service Framework
• SSL bug fix in Netty C code

• Local patch for Java8

• Massive coordination effort

• Repeat for…
• Python

• Node

• C++

• Elixir

• Go



Deploying Envoy Elsewhere

Ingress-web Ingress-api

api-canary

Envoy Deployment Group



1’s a Load Balancer, 2’s a Mesh?

Ingress Load Balancer

Front-end Application

Inbound Proxy

Front-end Application



1’s a Load Balancer, 2’s a Mesh?

Ingress Load Balancer

Front-end Application

Inbound Proxy



Meshify
Verb

1. To deploy a proxy in front of a service for inbound and outbound 
application traffic.

Meshified
adjective

1. Being a part of a service mesh.



The Control Plane

Bootstrap 
Configuration

clusters.yml

listeners.yml

routes.yml

Service 
Discovery 
Daemon



The Control Plane

{% import ‘mesh_macros.jinja’ as mesh %}

mesh.http_service(“my_website”, 8080, healthcheck=”/status”)

mesh.cluster(“some_service”, 9000)



The Control Plane

Jinja Templates Envoy Config 
Compiler Static Analysis

routes.yml

clusters.yml

listeners.yml



The Fundamentals

• Ability to deploy Envoy to any service

• Ability to configure Envoy for any service

• Templates to simplify the configuration interface – able to write raw Envoy when needed

• A build system that allowed us to write C++ extensions, apply patches, and regularly 

sync with upstream

• A static analysis system that caught most mistakes locally or on CI



Internal Web Envoy

• Envoy deployment with Jinja macros targeting:
• TLS termination

• Clickjacking and XSS prevention headers

• CSRF

• CORS

• Just another node in the mesh

• Runs in front of all internal web services
• Phabricator

• Jenkins

• Teletraan (deployment tool)

• Etc.



New Mesh Use-Cases

• Web Infrastructure Team – Advanced Infrastructure-Specific Routing

• Site Reliability Engineering Team – Generic SLI Monitoring for Error 

Budget tracking

• Privacy & Legal Team – HTTP Cookie Monitoring



“How did we get here?”

• Solving business problems first

• Incremental progress

• Delivery at each step

• Unification of Traffic and Service Framework

• Envoy extensions

• Buy-in from other teams and organizations



Thank You!


