
© 2020 Bloomberg Finance L.P. All rights reserved.

K8s in the Datacenter:
Integrating with Pre-existing
Bare Metal Environments
KubeCon + CloudNativeCon Europe 2020 Virtual
August 20, 2020

Max Stritzinger
Site Reliability Engineer

© 2020 Bloomberg Finance L.P. All rights reserved.

Overview

— K8s networking overview for on-prem

— Our network environment and journey

— Tips, tricks, and tools for debugging your environments

© 2020 Bloomberg Finance L.P. All rights reserved.

K8s Networking Model

— Pods are schedulable units of work
• Each has either a IPv4 or IPv6 address or both (dual stack)
• Must be able to communicate without NAT

— Two broad categories of networking implementations
• Overlay network model
• Flat network model

— We need to support both models

© 2020 Bloomberg Finance L.P. All rights reserved.

Overlay Networks

— Pod to Pod requires encapsulation
• Pod IPs on the wire will be dropped by the network
• Encapsulate traffic in another protocol
• Destination IP on outer packet is host running destination pod
• Source address on outer packet is host running source pod
• Requires agent to program routes

— Pod to external network requires source NAT
• Pods assume address of the host
• Usually accomplished using MASQUERADE on Linux
• Hosts act as gateways between pod network and everything else

© 2020 Bloomberg Finance L.P. All rights reserved.

Flat Networks

— Pods are “first class citizens” in your network
• Routable by IP from outside cluster

— No encapsulation/SNAT required

— Need some way of sharing routes with the rest of the network

© 2020 Bloomberg Finance L.P. All rights reserved.

Choosing Flat vs. Overlay: Overlays

— Overlay Pros
• May not have to engage network team
• Can reuse pod IP space between clusters
• Ingress points to cluster are well-defined

— Overlay Cons
• Encapsulation overhead
• Forces pod traffic to all have host IPs
• Can complicate debugging

© 2020 Bloomberg Finance L.P. All rights reserved.

Choosing Flat vs. Overlay: Flat

— Flat Pros
• Everything “looks as expected” when debugging
• Pods can be talked to directly
• Lots of options for source-address based filtering

— Flat Cons
• Definitely requires engaging your network team
• Pods can be talked to directly
• Have to worry, sometimes deeply, about IPAM

© 2020 Bloomberg Finance L.P. All rights reserved.

Other Considerations

— IPAM! IPAM! IPAM! (on flat pod networks or for your VIPs)
• Service VIPs should probably be kept local to cluster

— NodePorts may not be enough for L3/L4 ingress
• Clients need to get node IPs somehow
• Ports must be from a high range
• May need LoadBalancer implementation

— By default controller-manager assigns nodes CIDRs
• Single cluster CIDR doesn’t work if you need to grow it
• Probably not going to work in a flat network…

© 2020 Bloomberg Finance L.P. All rights reserved.

Calico

— Open source CNI provider that supports flat and overlay network
implementations

— Great IPAM support <3
• Adding new pools / growing the CIDR range
• Selecting pool to allocate based on node or pod labels
• Nodes are dynamically assigned blocks (multiple CIDR ranges per node)

— Also handles NetworkPolicies

© 2020 Bloomberg Finance L.P. All rights reserved.

Implementing K8s in Our Environments

— We run on bare metal and private cloud VMs

— New network architecture
• Old tooling breaks for network reasons :(
• Let’s debug!

— What does our environment look like?
• L3 ECMP to each host
• Host advertising single IP to 2 independent ToRs
• Using BGP with BIRD to do so
• RFC 7938

© 2020 Bloomberg Finance L.P. All rights reserved.

Implementing K8s in Our Environments

© 2020 Bloomberg Finance L.P. All rights reserved.

Implementing K8s in Our Environments: Challenges

— Are we pioneers?

— Trying to understand what the purposes of different implementation details are

— Need to modify open source projects

— Sometimes people don’t understand your use case :(

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #1: Running Multiple BIRD Instances

— Our hosts use BIRD to advertise their service addresses

— Calico uses BIRD to advertise addresses

— Both run in root network namespace, binding same ports and addresses

— ToR will only accept one peering connection

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #1: Running Multiple BIRD Instances

— Same ports and addresses
• “Host” BIRD does not need incoming connections
• Overwrite Calico BIRD template files with volumes

— ToR will only accept one peering connection
• Multiple BGP speakers is a common problem
• Host BIRD is the most critical, because if it dies we cannot reach hosts
• Don’t want to need CNI to be up in order for host networking to work
• Peer Calico BIRD to host’s BIRD

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #1: Running Multiple BIRD Instances

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #1: Running Multiple BIRD instances

— Hosts now drop on and off the network

— Routing table alternating between K8s and network routes

— BIRD acts similarly to K8s operator

— Sync to different routing tables!

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #1: Running Multiple BIRD instances

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #2: Iptables Masquerade

— Iptables target that marks connection for source NAT
• Used by Calico, kube-proxy, portmap CNI, and many others

— Determines address for source NAT automagically
• Looks at “primary address” on outgoing interface
• Takes no other routing information into consideration
• Really useful in any situation other than ours!

— Bad for us!

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #2: Iptables Masquerade

© 2020 Bloomberg Finance L.P. All rights reserved.

Issue #2: Iptables Masquerade

— Where is MASQUERADE used?
• Used for source NATing of pod → external
• Used for hairpin traffic in kube-proxy, host ports
• Used for host → local pod traffic
• Used for NodePorts
• ….

— In most of these instances we need SNAT rule instead
• Allows for specifying a specific, single IP

— Still sometimes need MASQUERADE though. Ugh!

© 2020 Bloomberg Finance L.P. All rights reserved.

Addressing MASQUERADE: Calico

— MASQUERADE rule used for pod → external traffic

— Traffic has transit address attached and gets dropped

— We modified Calico to be able to use SNAT rule instead of MASQ

— Changes are upstream

© 2020 Bloomberg Finance L.P. All rights reserved.

Addressing MASQUERADE: Kube-Proxy

— When is MASQUERADE used?
• Hairpin traffic
• Arriving off-cluster traffic
• NodePorts
• LoadBalancers
• ...

— When do we *need* it?
• Only with tunnel devices
• MASQUERADE takes the IP on the tunnel device
• Only when destination pod for a service is off-node

© 2020 Bloomberg Finance L.P. All rights reserved.

Addressing MASQUERADE: Kernel Bug?

— Overlay environment, IP in IP

— Some hosts talking to K8s service VIP are MASQ’ing on the encapsulating
packet

• But only to some VIPs

— Some hosts are fine

— Issue seems to show up and then disappear intermittently

— Let’s debug!

© 2020 Bloomberg Finance L.P. All rights reserved.

Network Debugging: Starting Points

— ping

— dig

— netcat
• Basic tests of TCP, UDP connectivity

— iproute2 suite
• ss -- socket stats
• ip route/rule/addr/link/neigh

© 2020 Bloomberg Finance L.P. All rights reserved.

Network Debugging: Going Deeper

— tcpdump
• Old faithful
• See packets as they are “on the wire”
• See IF they’re on the wire

— iptables
• Read the iptables (or nftables) rules. It’s doable!
• Use iptables TRACE target for help debugging

— conntrack
• Keeps track of connections and any NAT done

© 2020 Bloomberg Finance L.P. All rights reserved.

Network (Kernel) Debugging: Even Deeper

— perf trace
• Use it like strace, but also see tracepoints in the kernel
• net:*, skb:*, tcp:*, udp:* tracepoints for network debugging

— eBPF: It’s not just for CNI implementations
• Inspect arguments to kernel functions on live systems

— ftrace
• Get call graph for every function in the kernel used on behalf of a process

© 2020 Bloomberg Finance L.P. All rights reserved.

Our issue?

— kube-proxy uses iptables MARKs to select packets for MASQing

— Using eBPF, we were able to see that those MARKs persist through packet
encapsulation (e.g., with a tunnel device)

— This makes the conntrack entry for the encapsulating packet marked for MASQ

— Encapsulating protocol is IP in IP, so all subsequent encapsulating packets to
the destination host are MASQ’d

— BUT, if the first encapsulating packet is not MARK’d, then future ones will also
not be

© 2020 Bloomberg Finance L.P. All rights reserved.

Thank you!
https://www.bloomberg.com/careers

https://www.bloomberg.com/careers

