Is Sharing GPU to Multiple Containers feasible?

Samed Güner, SAP Artificial Intelligence August 18, 2020

Is sharing GPU to multiple containers feasible? #52757

() Open tianshapjq opened this issue on 20 Sep 2017 · 67 comments

/kind feat What hap								
				•	iners, one GPU o on achieving this		•	
	like CPU or							
-	•	to happen: iple container	rs just like C	PU and me	mory.			
👍 137	🎉 7) 34	🚀 4	e 2				
die b		-robot added		sig label or	n 20 Sep 2017	Contributor	Author	+ 👜 🚥
tianshap	q commen		p 2017	sig label or	n 20 Sep 2017	Contributor	Author	+ 🔃 🚥
tianshap	q commen	ited on 20 Se	p 2017	sig label or	n 20 Sep 2017	Contributor	Author	+ 😐 🚥
tianshap @vishh @	iq commer	ited on 20 Se	ep 2017 le?	sig label or	n 20 Sep 2017	Contributor		+
tianshap @vishh @	iq commer	nted on 20 Se o is it workabl	ep 2017 le?	sig label or	n 20 Sep 2017	Contributor		

About me

- Developer at SAP Artificial Intelligence
- Contributor to Terraform and Cloud Foundry
- Living in Germany, having Turkish roots

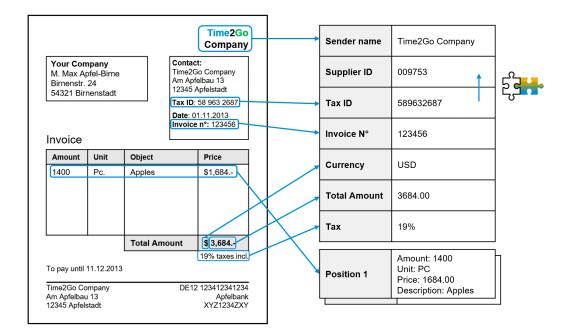
Open Source Projects

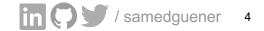
Contributions and Commitments from SAP

Platinum Member

Strategic Member

Platinum Member




in () / samedguener 3

Artificial Intelligence at SAP

- Providing AI platform and services for enterprises and SAP applications
- Embedding intelligence into enterprises
- Large number of models in production

Al Service: Document Information Extraction

ML on GPUs in K8s

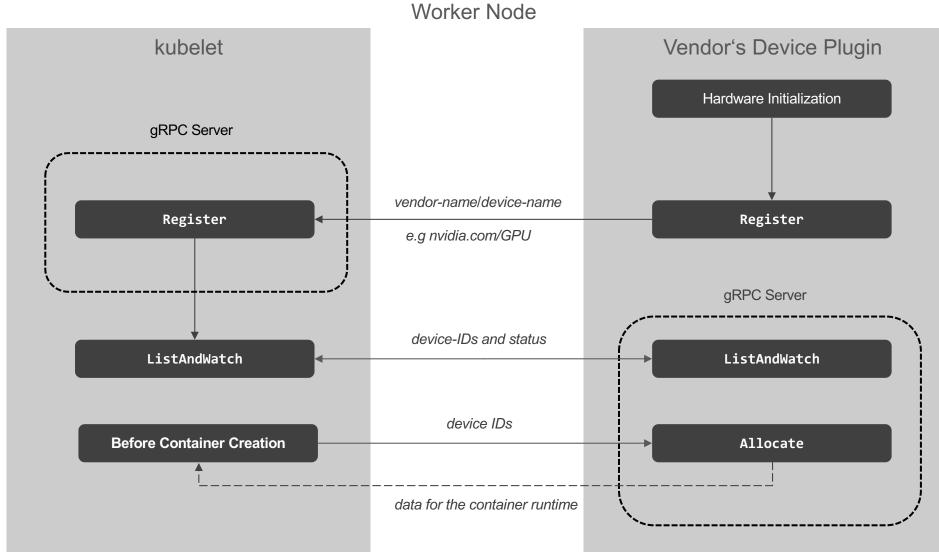
- Expensive workload
- GPU utilization as challenge
- Sparse and limited availability

Fictional Calculation: u = 70% = 0.7 n = 500 $p = $3,06 \frac{1}{h}^{-1}$ C(n) = (1 - u) * n * p $= \left(0.3 * 500 * $3,06 \frac{1}{h}\right) * 768 h$ $= $352.512 \ loss \ per \ month$

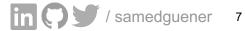
¹ averaged price from AWS, Azure and GCP, smallest setup with one Nvidia Tesla V100

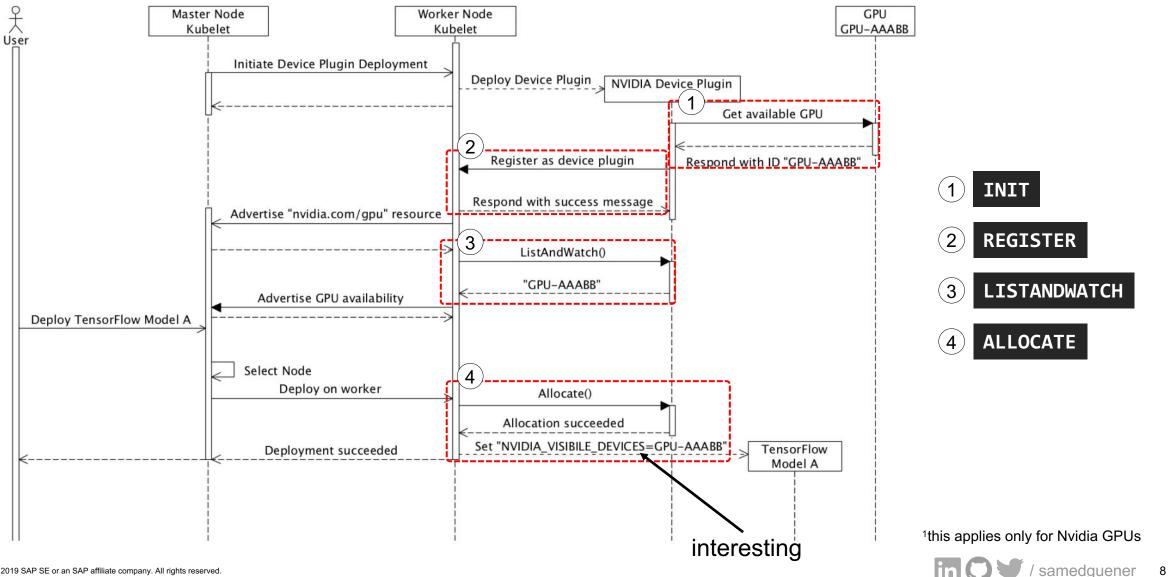
So we asked ourselves ..

Is sharing GPU to multiple containers feasible? #52757


() Open tianshapjq opened this issue on 20 Sep 2017 · 67 comments

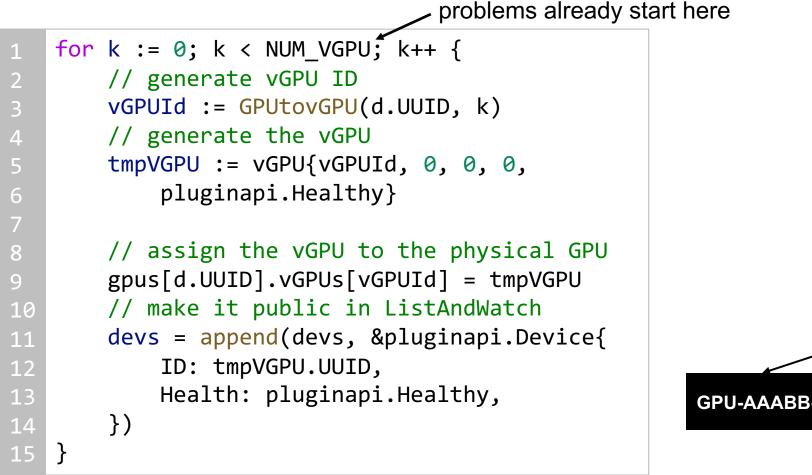
.. too¹.

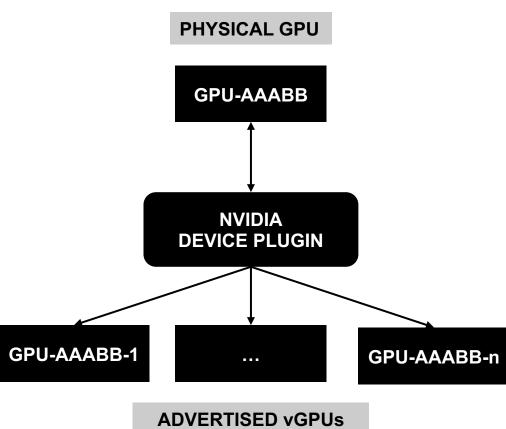

¹ target: Nvidia GPUs


K8s Device Plugins¹

¹ as of K8s 1.10

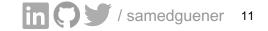
So how are GPUs provisioned in K8s?¹




So how did we share a GPU?


- Variant 1: Model Stuffing in Application Logic
 - no CGROUPS for cpu/memory
 - no ability to do request rate limiting per model
- Variant 2: Advertising more GPUs to K8s
 - extending the Nvidia Device Plugin for vGPUs
- Variant 3: NodeSelector Hacking
 - Privileged Container consume GPU directly
 - No Kubernetes Scheduling at all

So how do we advertise more GPUs?

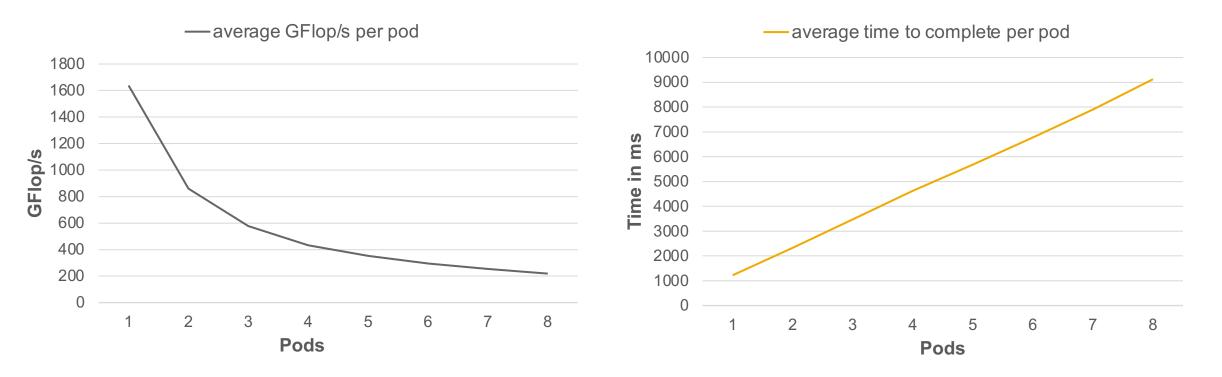


We asked ourselves ..

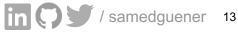
- How many models can we fit on a Nvidia K80s?

- How does the whole system behave?
- What are the trade-offs in doing so?

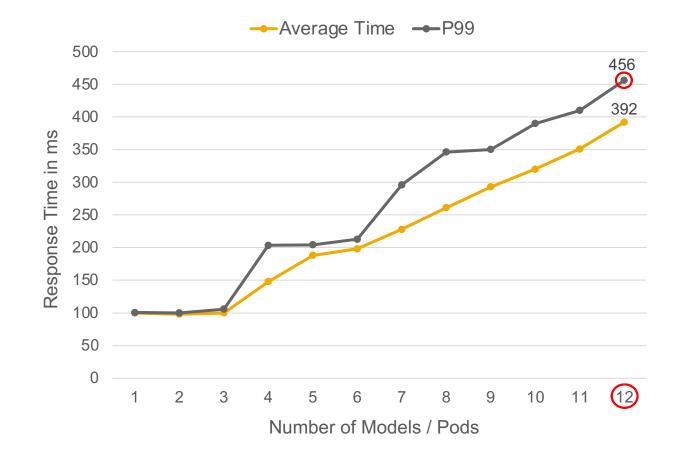
.. so we did our experiments and collected data.


Collecting Data from NVIDIA Device Plugin

- <u>Device Plugins are K8s Resources</u>!
- Collect Data with Nvidia Management Library (NVML)
 - Low Level Access to GPU
 - Go-C Bindings
 - Used by nvidia-smi
- Expose via Prometheus and Grafana



nbody Simulation (n= 100096)

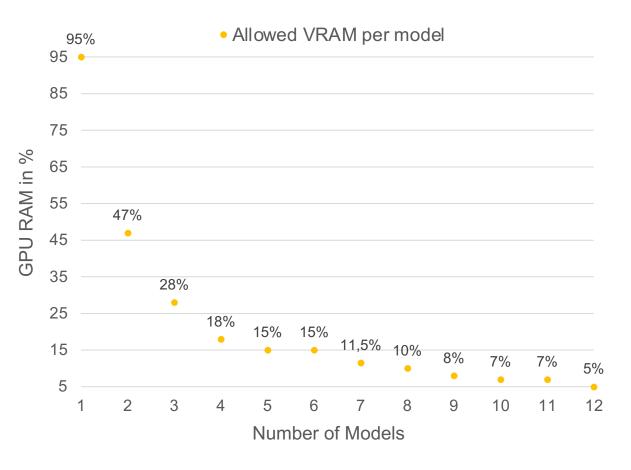


- Missing aspects for ML inference (but comparable to ML training)
- Fair-Scheduling (?)
- No GPU RAM Limiting & Fair Share of CPU

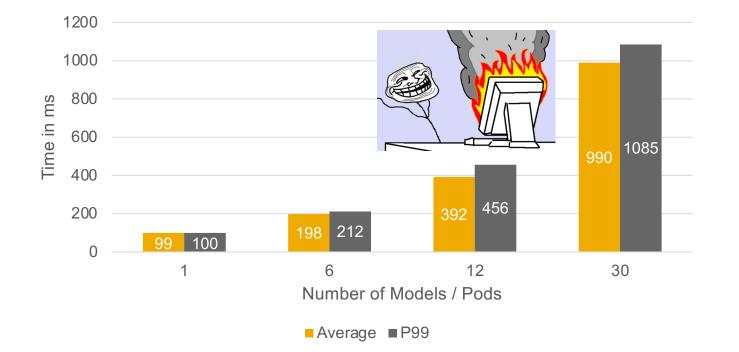
¹ for all experiments we use p2.xlarge with 1x Nvidia Tesla K80 (12 GB)

ML Inference InceptionV3 (sequential requests)

- Low Throughput: 1 Request per Model
- 10,000 requests per Pod
- CPU Limit: 350m per Pod


¹ for all experiments we use p2.xlarge with 1x Nvidia Tesla K80 (12 GB)

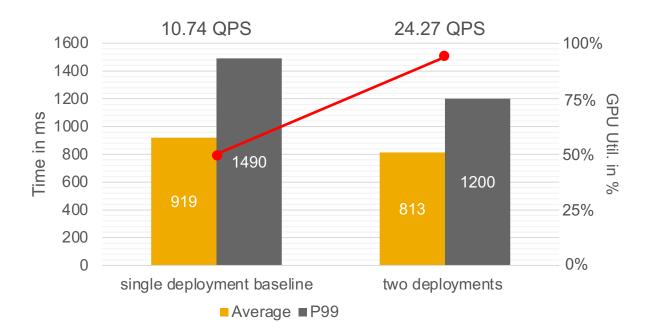
Dealing with GPU RAM for InceptionV3²


- Limiting Tensorflow Serving (TFS) Ram:
 - tf.GPUOptions
- Dynamic Scheduling:
 - Offer vGPUs until memory is full
- Can we go deeper?

¹ for all experiments we use p2.xlarge with 1x Nvidia Tesla K80 (12 GB) ² only applicable for TensorFlow 1.x

Dealing with GPU RAM for InceptionV3² (sequential requests)

- Minimum 228 mb per Model
 - <u>up to 50 models</u> on one K80
 - TFS will crash for less!
- 30 Models with each having:
 - 100m CPU Limit
 - 3% of VRAM
 - 1 Request at time


¹ for all experiments we use p2.xlarge with 1x Nvidia Tesla K80 (12 GB)

² only applicable for TensorFlow 1.x

ML Inference InceptionV3 (parallel requests, no batching)

- Limits:
 - 10 parallel requests per Model
 - 350m CPU Limit
 - 3% of VRAM
- 4x worse than sequential request pattern
- Increase in throughput leads to increase in latency and GPU util.
 - \rightarrow GPU has more work to do!

With batching enabled 2x latency and throughput improvement for 6.6x more VRAM.

¹ for all experiments we use p2.xlarge with 1x Nvidia Tesla K80 (12 GB)

² only applicable for TensorFlow 1.x

Germans would say ..

Jein¹

(yes, but with trade-offs and limitations)

¹an answer between yes and no

What does that all mean?¹

ML Inference

- Our solution is far away from production-ready
- GPU sharing is possible, if you try hard.
 - up to 30x cost saving²
 - Trade-Off between Throughput and Latency
- CPU limits as key factor in our setup
 - can be used to in-/decrease GPU Utilization, thus latency and throughput
 - allows deployment of multiple models with similiar latencies while doubling throughput
 - GPU Util. overcommitment will increase latency

¹ for all experiments we use p2.xlarge with 1x Nvidia Tesla K80 (12 GB) ² K80 in combination with InveptionV3 capped at 228 MB VRAM and 100m CPU

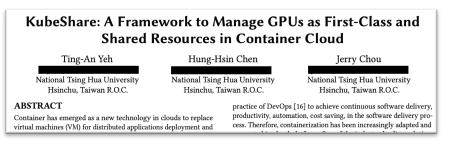
Limitations with our GPU Sharing

- No isolation gurantee on hardware level by Nvidia¹
 - Multi-Tenancy setup is impossible
 - Still some sort of fair-scheduling of GPU duties
- No Low-Level API to specify GPU and VRAM
 - CPU Limits and TFS the only current way²
- "Scheduling" only by offering vGPUs from Device Plugin
- Resource Fragmentation

¹ for Nvidia Tesla K80

² without major customizations on CUDA level

What do we need for GPU Sharing?


- Scheduling / isolation on GPU-level
 - CGROUP-like isolation of GPU resources
- Resource Defragmentation / Locality-Awareness
- Low-overhead during scheduling and processing
- Per device sub-resources (GPU Util. and VRAM) exposed at device plugin

What does the community do?

- Deepomatic (github.com/Deepomatic/shared-gpu-nvidia-k8s-device-plugin)
 - Multiple vGPUs per GPU (cf. our implementation)
- Tencent's GPU-Manager (<u>https://github.com/tkestack/gpu-manager</u>)
 - Cuda-Core / VRAM Requests & Limits
 - Custom Wrapper around Nvidia Device Library
- KubeShare (github.com/NTHU-LSALAB/KubeShare)
 - Released June 2020
 - Set of custom controller / CRs
 - Sharing through CUDA Calls API interception
 - Powerful: Fine-grained allocation, isolation, locality-aware, low overhead

apiVersion: v1 kind: Pod metadata: name: vcuda annotations:
tencent.com/vcuda-core-limit: 50
spec:
restartPolicy: Never
containers:
- image: <test-image></test-image>
name: nvidia
command:
– /usr/local/nvidia/bin/nvidia-smi
- pmon
d
- 10
resources:
requests:
<pre>tencent.com/vcuda-core: 50</pre>
<pre>tencent.com/vcuda-memory: 30</pre>
limits:
<pre>tencent.com/vcuda-core: 50</pre>
<pre>tencent.com/vcuda-memory: 30</pre>

Contact information:

samed.guener@sap.com

in () y / samedguener

