
Ben Hirschberg

How Many CPU Cycles I Need to

Invest in Cloud-Native Security?

whoami

Ex-hacker turned cloud native
entrepreneur

That’s not
me!

Love teaching!

Balling with
enthusiasm

4 kids -> no
spare time

:toc

TLS in cloud native

benchmarking

evaluation

improvements

man whyRwehere

Attackers are everywhere

Our security is nowhere

Find solution anywhere

Costs should stay somewhere

RFC 8446

What is TLS?
a) A psychedelic drug
b) A secure communication protocol over

TCP
c) Wait, TCP is the psychedelic drug

What cryptographic algorithms are
used by TLS?
a) AES
b) SHA
c) RSA
d) Which are not?!

What security features TLS gives:
a) Confidentiality
b) Integrity
c) Authenticity
d) All three above

Who are the two “original” endpoints
of TLS?
a) Alice and Bob
b) Netscape and Httpd
c) Sidecar and sidecar
d) Client software and TLS termination

hardware

tcpdump port 443

Parts of TLS protocol

Handshake protocol

Application protocol

Alert protocol

• Happens per connection establishment
• Cipher suit negotiation
• Authentication (mutual) and key exchange
• Uses asymmetric cryptography!

• Per application message
• Encryption and message authentication
• Uses symmetric cryptography

• Happens when there is an error in TLS
• No cryptography involved

top –p $(pgrep nginx)

Computational requirements of TLS

Handshake protocol Application protocol

RAM

CPU

NET

kubectl create tls

TLS types in cloud native environment

North-south:
• TLS termination
• Mostly one-sided TLS

East-West:
• Setup

• Homebrew
• Sidecar proxy based
• Inline based

• Cases of mutual authentication (mTLS)

Extra CPU usage

Extra RAM usage

jmeter run

Simple test setup

Static files at 4
sizes: 1b, 1kb, 1mb,

100mb

4 x

8G

4 x

8G

cat results | head

Initial results…

0

200

400

600

800

1000

1200

1 1024 1,048,576 104,857,600

Request time in msec

Nginx clear Nginx TLS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 1024 1,048,576 104,857,600

Request per second

Nginx clear Nginx TLS

round()

Let’s do some rough
calculations!

time curl https://

TLS handshake timings

Server certification validation (normal)
• Client CPU time ~ 2msec
• Server CPU time ~1msec

Mutual certificate validation (mTLS)
• Client CPU time ~2.5msec
• Server CPU time ~2.5msec

Given Elliptic-curve Diffie-Helman
key exchange with RSA signature
With a 2048 bit key

time curl https://

TLS application protocol

Encryption
• Pure software AES256 ~250Mb/sec

Message authentication
• Software SHA256 ~300Mb/sec

1Mb traffic requires ~7.3msec CPU time at one side and ~14.6msec on both
143,640kb/s

Rough numbers for the sake of
discussion, not final ;)

qalc –t “1000=x”

Formula for calculation of transaction per second

𝑛 = number of transactions
𝐻𝑐 = client side handshake CPU time (seconds)
𝐻𝑠 = server side handshake CPU time (seconds)
𝑆 = encryption bandwidth (bytes/seconds)
𝑇 = bytes in one transaction

𝐻𝑐 +𝐻𝑆 𝑛 + 2
𝑇

𝑆
𝑛 = 1𝑠

𝑛 =
1𝑠

𝐻𝑐 + 𝐻𝑠 + 2
𝑇
𝑆

jmeter-it

Test application 1.

Server:
• TLS handshake per TCP connection
• TLS Crypto parameters as defined before
• 1Kb application data per transaction

Actual: ~0.003043 s/request => ~328/s

1 x

8G

1 x

8G

𝑛 =
1𝑠

0.002𝑠+0.001𝑠+2
1024𝑏

143,640,547
𝑏
𝑠

=
1𝑠

0.002𝑠+0.001𝑠+0.0000142578125𝑠
= 331.75

jmeter-it

Test application 2.

Server:
• TLS handshake per TCP connection
• TLS Crypto parameters as defined before
• 100Mb application data per transaction

Actual: ~1.134 s/request => ~0.7/s

1 x

8G

1 x

8G

𝑛 =
1𝑠

0.002𝑠+0.001𝑠+2
104,857,600𝑏

143,640,547
𝑏
𝑠

=
1𝑠

0.002𝑠+0.001𝑠+0.73𝑠
= 0.683

apt-get install openssl

Example calculation of overhead added by TLS

𝑛 = 5000
𝐻𝑐 = 2.5
𝐻𝑠 = 2.5
𝑆 = 150Mb/s
𝑇 = 1024b

0.0025 + 0.0025 5000 + 2
1024

150𝑀𝑏/𝑠
5000 = 25.06𝑠

Main component is handshake!

rm –rf /tmp/*

Improving handshake: performance of cryptographic algorithms

Key exchange algorithm: Elliptic Curve Diffie-Hellman (no contest)

Key exchange signing algorithm: RSA 2048 + SHA256

Certificate validation: RSA 2048 + SHA256

Least CPU consuming but still secure

history | grep keys

Improving handshake: expedited handshakes

Client-side session tickets
• Enables the client to reconnect server without full handshake
• Makes respective handshakes 10x faster
• Client needs to “remember” the server

PSK – pre shared keys
• Session establishment without using asymmetric cryptography
• Makes every handshake 10x faster
• Only for those who have infrastructure for pre-sharing keys…

tickets

Example calculation with expedited TLS handshake

𝑛 = 5000
𝐻𝑐 = 0.2
𝐻𝑠 = 0.2
𝑆 = 150Mb/s
𝑇 = 1024b

0.0002 + 0.0002 5000 + 2
1024

150𝑀𝑏/𝑠
5000 = ~2.1𝑠

Way better!!!

grep aes /proc/cpuinfo

Improving application protocol

Encryption
• AES-NI support: can go up-to 3Gb/s
• AES-128 is 33% faster than 256 but is phasing out
• Chacha algorithm is preferable where no AES hardware support

Message authentication
• Intel lacking SHA accelerator support in most servers
• SHA3-256 is the fastest hash with acceptable security
• Authenticated encryption: AES-GCD

