
Stefan Prodan & Hidde Beydals

Flux Deep Dive
The road to “Flux v2” and Progressive
Delivery

Flux most wanted

Top feature requests

1. Multi-repository support
2. Operational insight through health checks, events and alerts
3. Multi-tenancy capabilities

“Flux v2” overview

Introducing the GitOps Toolkit

The GitOps Toolkit is a set of composable APIs and specialized tools that
can be used to build a Continuous Delivery platform on top of Kubernetes.

These tools are built with Kubernetes controller-runtime libraries and they can
be dynamically configured with Kubernetes custom resources either by
cluster admins or by other automated tools.

The GitOps Toolkit components interact with each other via Kubernetes events
and are responsible for the reconciliation of their designated API objects.

GitOps Toolkit website: https://toolkit.fluxcd.io

https://github.com/kubernetes-sigs/controller-runtime
https://toolkit.fluxcd.io

tk: the GitOps Toolkit CLI

The GitOps toolkit CLI utility allows cluster admins to configure the toolkit
and assemble CD pipelines without having to write tomes of YAML

● Seamlessly integrates with Git providers like GitHub and GitLab

● Deploy keys provisioning for Git sources (SSH and token based auth)

● Install/upgrade/check/uninstall operations for the toolkit components

● Scaffolding and CRUD operations for the toolkit custom resources

tk documentation: https://toolkit.fluxcd.io/cmd/tk/

https://toolkit.fluxcd.io/cmd/tk/

Toolkit component driven “Flux v2”

Flux v1 is a monolithic do-it-all operator, the GitOps Toolkit separates the functionalities
into specialized controllers.

Flux v2 will be a curated set of configuration for the GitOps Toolkit which you can simply
consume using the tk command. Limiting the use of features and/or adding extensions
on top of Flux has never been this easy.

Source Controller

The main role of the source management component is to provide a common
interface for artifacts acquisition. The source API defines a set of Kubernetes
objects that cluster admins and various automated operators can interact with
to offload the Git and Helm repositories operations to a dedicated controller.

Operations:

● Authentication and authenticity validation
● Event-based and on-a-schedule policy driven artifacts acquisition
● Produce immutable artifacts from sources

Overview: https://toolkit.fluxcd.io/components/kustomize/controller/
API Spec: https://toolkit.fluxcd.io/components/kustomize/kustomization/

https://github.com/fluxcd/source-controller
https://toolkit.fluxcd.io/components/kustomize/controller/
https://toolkit.fluxcd.io/components/kustomize/kustomization/

Source Controller

Specialized Reconcilers

The GitOps Toolkit allows specialized reconcilers to collaborate when declaring
the desired state of a group of clusters:

● kustomize-controller
● helm-controller
● image-update-controller (TBA)
● fleet-controller (TBA)
● ...

All these controllers will be using the Source API package to acquire artifacts
from the source-controller and subscribe to “source changes” events.

https://github.com/fluxcd/source-controller/blob/master/docs/spec/v1alpha1/common.md

Reconciliation of Resources from Git

Flux v1
● Limited to reconciling resources from a

single Git repository
● “Declarative Git configuration” via

arguments in the Flux deployment, cloned
and fetched by fluxd

● Only supports following the HEAD of Git
branches

● Reconciliation can be suspended by
downscaling the Flux deployment

● Credentials config via arguments and/or
secrets volume mounts in the Flux pod

Toolkit component driven “Flux v2”
● Can reconcile resources from multiple Git

repositories
● Declarative configuration through a

GitRepository CR, producing an artifact to
be reconciled by other controllers

● Supports Git branches, pinning on
commits and tags, and following SemVer
tag ranges

● Reconciliation can be paused per resource
by suspending the GitRepository

● Credentials config per GitRepository
resource (SSH private key, HTTP/S
username/password/token, OpenPGP
public keys)

Kustomize Controller

The kustomize-controller is a Kubernetes operator, specialized in running
continuous delivery pipelines for infrastructure and workloads defined with
Kubernetes manifests and assembled with Kustomize.

● Reconciles the cluster state from multiple sources
● Generates manifests with Kustomize from plain yamls or overlays
● Validates manifests against Kubernetes API
● Impersonates service accounts (multi-tenancy RBAC)
● Health assessment of the deployed workloads
● Runs pipelines in a specific order (depends-on relationship)
● Prunes objects removed from source (garbage collection)
● Reports cluster state changes

Kustomize Controller

Kustomize support

Flux v1
● “Declarative configuration” through

.flux.yaml files in the Git repository
● Manifests are generated via shell exec and

then reconciled by fluxd
● Reconciliation using the service account of

the Flux deployment
● Garbage collection needs a cluster role

binding for Flux to query the Kubernetes
discovery API

● Support for custom commands and
generators executed by fluxd in a POSIX
shell

Toolkit component driven “Flux v2”
● Declarative configuration through a

Kustomization CR, consuming the
produced artifact from the GitRepository

● Generation, server-side validation, and
reconciliation is handled by a specialized
kustomize-controller

● Support for service account impersonation
● Garbage collection needs no cluster role

binding or access to Kubernetes discovery
API

● No support for custom commands

Helm Controller

The helm-controller is the GitOps Toolkit’s component driven “Flux v2” Helm
Operator, and performs Helm actions for HelmRelease resources using the
HelmChart artifacts produced by the source-controller.

● Complete rewrite from scratch
● Offloaded Helm repository and chart reconciliation
● Improved HelmRelease API design
● Simplified operations model
● Helm storage drift detection without performing dry-run comparisons

Overview: https://toolkit.fluxcd.io/components/helm/controller/
API Spec: https://toolkit.fluxcd.io/components/helm/helmreleases/

https://toolkit.fluxcd.io/components/helm/controller/
https://toolkit.fluxcd.io/components/helm/helmreleases/

Helm Controller

Integration with Helm

Helm Operator v1
● Declarative configuration in a single

HelmRelease CR
● Chart synchronization embedded in the

operator
● Support for fixed SemVer versions from Helm

repositories
● Git repository synchronization on a global

interval
● Limited observability via the status object of

the HelmRelease resource
● Resource heavy, relatively slow

Toolkit component driven helm-controller
● Declarative configuration through

HelmRepository, HelmChart and
HelmRelease CRs

● Extensive release configuration options, and
a reconciliation interval per source

● Support for depends-on relationships
between HelmRelease resources

● Support for SemVer ranges for HelmChart
resources

● Planned support for charts from
GitRepository sources

● Better observability via the HelmRelease
status object, Kubernetes events, and
notifications

● Better performance

Notification Controller

The notification-controller is specialized in handling inbound and outbound
events.

The controller handles:

● Events coming from external systems (GitHub, GitLab, Bitbucket, Harbor,
Jenkins, etc) and notifies the GitOps Toolkit controllers about source
changes

● Events emitted by the GitOps Toolkit controllers, that are dispatched to
external systems (Slack, Microsoft Teams, Discord, Rocket) based on
event severity and involved objects

Overview: https://toolkit.fluxcd.io/components/notification/controller/
API Spec: https://toolkit.fluxcd.io/components/notification/event/

https://toolkit.fluxcd.io/components/notification/controller/
https://toolkit.fluxcd.io/components/notification/event/

Notification Controller

Notifications, webhooks and observability

Flux v1
● Emits “custom Flux events” to a webhook

endpoint
● RPC endpoint can be configured to a 3rd

party OSS solution like FluxCloud to be
forwarded as notifications to e.g. Slack

● Limited incoming webhook functionalities
● Unstructured logging
● Custom Prometheus metrics

Toolkit component driven “Flux v2”
● Emits Kubernetes events for all custom

resources part of the Toolkit
● Toolkit components can be configured to

POST the events to a notification-controller
endpoint

● Selective forwarding of POSTed events as
notifications using Provider and Alert CRs

● Extensive support for incoming webhooks
for a wide range of platforms

● Structured logging for all components
● Generic / common controller-runtime

Prometheus metricsFluxCloud: https://github.com/justinbarrick/fluxcloud

FluxCloud (active fork): https://github.com/topfreegames/fluxcloud

https://github.com/justinbarrick/fluxcloud
https://github.com/topfreegames/fluxcloud

Advanced Deployment Strategies

Given the extensible nature of the GitOps Toolkit, we can reduce the risk of
introducing a new software version in production by leveraging Flagger’s
progressive delivery strategies:

● Canary Release (progressive traffic shifting)
○ Applications that expose HTTP or gRPC APIs

● A/B Testing (HTTP headers and cookies traffic routing)
○ User-facing applications that need session affinity

● Blue/Green (traffic mirroring)
○ Idempotent APIs

● Blue/Green (traffic switch)
○ Stateful applications
○ Legacy applications

Flagger and Progressive Delivery

Flagger works out-of-the-box with the GitOps Toolkit.
In the future the toolkit reconcilers will be using Flagger’s
canary status to drive the release process across
interdependent workloads.

https://github.com/weaveworks/flagger

Questions?

Join the GitOps Toolkit discussions on GitHub
https://github.com/fluxcd/toolkit/discussions

https://github.com/fluxcd/toolkit/discussions

