
Enabling Multi-user Machine Learning
Workflows for Kubeflow Pipelines

A story about auth

Yannis Zarkadas, Arrikto
Yuan Gong, Google Cloud

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate. 2

Enabling Multi-user Machine Learning Workflows for
Kubeflow Pipelines

Yuan Gong
Software Engineer

Google Cloud

Yannis Zarkadas
Software Engineer

Arrikto

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

How multiple users can work on Kubeflow Pipelines in a secure, isolated manner.

Why is this important?

✓ Simplify user onboarding with an intuitive UX

✓ Accelerate pipeline development by writing pipelines as python code

✓ Collaborate in a secure and isolated manner

What You’ll Learn In This Session

3

Don’t forget, you can grab the slides right

now at arrik.to/kubeconAMS as well as

enter the draw to win a fabulous prize

Get your questions answered live on

Twitter and LinkedIn using the three

hashtags #kubecon #ml #arrikto

http://arrik.to/kubeconAMS

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

What is Kubeflow?

The Kubeflow project is dedicated to making

deployments of machine learning (ML) workflows

on Kubernetes: simple, portable and scalable.

4

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Kubeflow Pipelines

Platform for Machine Learning Pipelines:

● UI
● Python SDK to define Pipelines
● Visualizations
● Lineage Tracking
● ...

5

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

The Problem

● All Pipeline Runs happen in the same namespace
○ No way to isolate secrets
○ No way to isolate data

6

● Kubeflow Pipelines is NOT a K8s-native API
○ Does NOT use CRDs or Aggregated API-Server

● Kubeflow Pipelines has its own API Server and Persistence (MySQL, Object Store)
○ No isolation/authentication/authorization in initial design.
○ How do we extend it?

Pipelines
API Server

DB

Custom
Resource
Definition

Aggregated
API Server

etcd

K8s-style API

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Auth for Kubernetes APIs
Three takeaways:

1. Isolation using namespaces
2. Authentication with multiple options (OIDC, ServiceAccount, ...)
3. Authorization with Role Based Access Control (RBAC)

7

VERB /apis/GROUP/VERSION/namespaces/NAMESPACE/RESOURCETYPE/NAME

Namespace
K8s API Server

OIDC Service
Account

HTTP
Headers

Role

RoleBinding

RBAC

AuthorizationAuthenticationIsolation

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Auth for Kubernetes APIs
Kubernetes APIs:

● Built-in Resources: Pod, Deployment, PersistentVolume, etc.
● Custom Resource Definitions: Jupyter Notebook, Argo Workflow, etc.

8

GET /apis/apps/v1/namespaces/istio-system/deployments/istiod

POST /apis/kubeflow.org/v1/namespaces/kubeflow-user/notebooks/

Can user sarah GET deployment istiod in namespace istio-system?

Can serviceaccount user-jupyter-notebook CREATE notebook in namespace kubeflow-user?

VERB /apis/GROUP/VERSION/namespaces/NAMESPACE/RESOURCETYPE/NAME
ACTION on RESOURCE in NAMESPACE

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Auth for Kubeflow Pipelines - Isolation

Pipeline APIs have no isolation primitive:

● Add namespace to experiments
● Runs find their namespace from the experiment they are in

9

Experiment

Pipeline
Runs

Pipeline
Definition

create

BEFORE:
/apis/v1beta1/experiments/{experiment_id}

AFTER:
/apis/v1beta1/experiments/{experiment_id}?resource_reference_key.type=NAMESPACE&resource_re
ference_key.id=ns1

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Auth for Kubeflow Pipelines - Authentication
● HTTP Headers

○ Kubeflow comes with a trusted Istio Ingress-Gateway proxy
● Istio mTLS

○ Difficult to use Argo with sidecar
● ServiceAccountTokens

○ TokenRequest/TokenReview API
○ WARNING! Use custom audience specifically for Pipelines

10

Pipelines API
Server

PodPodIstio
Gateway

HTTP Headers ServiceAccountToken
(Audience: pipelines)✱

Projected
Volume:

ServiceAccount
Token

Istio

mTLS

✱ Will be
implemented
by Arrikto

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate. 11

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Auth for Kubeflow Pipelines - Authorization

12

Kubeflow Access Management Service (KFAM)

● View, Edit, Admin ACL per namespace
● Awkward way of assigning permissions
● Coarse-grained abstraction on top of K8s RBAC
● Deprecated

Can USER do ACTION on RESOURCE in NAMESPACE?

Pipelines API Server Endpoints
KFAM

Namespace ACL

GET /apis/v1beta1/runs/{id} view

GET /apis/v1beta1/runs?querystring view

POST /apis/v1beta1/runs edit

DELETE /apis/v1beta1/runs/{id} admin

GET /apis/v1beta1/pipelines/{id} view

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Auth for Kubeflow Pipelines - Authorization
Can USER do ACTION on RESOURCE in NAMESPACE?

13

Role Based Access Control (RBAC)

● Map each API endpoint to an RBAC permission
● Use SubjectAccessReview to make authorization decisions
● Use standard Roles/RoleBindings for assigning permissions

Pipelines API Server Endpoints
RBAC

Resources Verbs

GET /apis/v1beta1/runs/{id} Runs GET

GET /apis/v1beta1/runs?querystring Runs LIST

POST /apis/v1beta1/runs Runs CREATE

DELETE /apis/v1beta1/runs/{id} Runs DELETE

GET /apis/v1beta1/pipelines/{id} Experiments GET
✱ Will be
implemented
by Arrikto

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Istio Gateway
Enforces Authn

K8s API Server
Enforces Authz

Role

RoleBinding

Service Account

Pipeline

Mount extra SA token

TokenRequest
(audience: Pipelines)

Authorization: Bearer
Pipelines
API Server

DB

Execute Action

SubjectAccessReview

Istio mTLS

KUBEFLOW_USERID

Securing in-cluster traffic
Server PodClient Pod

Client
Container

Server
Container

Server PodClient Pod

Client
Container

Server
Container

Sidecar Sidecar

Securing in-cluster traffic

Multi user support for KFP

17

User 1

Centralized
Service

Workload 1 Workload 2

Namespace 1 Namespace 2

User 2

Centralized Option

authz

Service Gateway

Service 1 Service 2

Namespace 1 Namespace 2

Workload 1 Workload 2

User 2User 1

I am thin!

Decentralized Option

Istio authz Controller

Sends request

Creates

Centralized API Server
Pros
● Lower operational and computational cost
● Possibility of building cross-namespace features like sharing

Cons
● A lot of code changes throughout all APIs

Artifacts

Decentralized UI artifact servers
Pros
● Minimal code changes
● Flexible to customize, e.g. mount volumes in user namespaces
● No operational cost increase

Cons
● Limitedly higher computational cost

Design - what is missing?
● How do we integrate with other two authentication methods securely?
● Pipeline definitions are shared -- Code is shared.
● How do we isolate Object Store?
● How do we isolate Machine Learning Metadata DB (MLMD)?

Implementation - istio

The istio lessons I learned,
 the HARD way.

Implementation - istio
Gradual migration path enabling istio sidecar auto injection in a
shared namespace.

A few ways to configure auto injection

● Default injection policy in the istio-sidecar-injector configmap in
istio-system namespace (cluster scoped)

● “istio-injection: enabled” namespace label (required, but not
default)

● `sidecar.istio.io/inject: true/false` pod annotation

Workaround: I had to add pod annotations to every pod in the shared
namespace.

Implementation - istio
mTLS is required for namespace/service account in authorization
rules

Implementation - istio
Information needed by authorization rules need to be populated first

● Service port name should start with its protocol, e.g. http for http
payload related information

Implementation - istio
Takeaways as an istio learner

● Do not skip the basics
● Most authorization problems I met can be solved with just the

“ensuring proxies enforced policies correctly” section in the huge
“Common Problems / Security Problems” doc

Implementation - metacontroller

● The entire KFP controller fits into one single 281-line python file.
● Mounted as a configmap on a python image.

This means anyone can easily come, read and customize KFP
controller code to accommodate for their special requirements on
namespace setup.

Credits

This couldn’t happen without these amazing people:
● Ning Gao, previously at Google Cloud
● Chen Sun, Google Cloud
● Yang Pan, Google Cloud (Design only)
● Yannis Zarkadas, Arrikto (Design only)

arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

Demo

29

