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How multiple users can work on Kubeflow Pipelines in a secure, isolated manner.

Why is this important?

✓ Simplify user onboarding with an intuitive UX

✓ Accelerate pipeline development by writing pipelines as python code

✓ Collaborate in a secure and isolated manner

What You’ll Learn In This Session

3

Don’t forget, you can grab the slides right 

now at arrik.to/kubeconAMS as well as 

enter the draw to win a fabulous prize

Get your questions answered live on 

Twitter and LinkedIn using the three 

hashtags #kubecon #ml #arrikto

     

     

http://arrik.to/kubeconAMS
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What is Kubeflow?

The Kubeflow project is dedicated to making 

deployments of machine learning (ML) workflows 

on Kubernetes: simple, portable and scalable.
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Kubeflow Pipelines

Platform for Machine Learning Pipelines:

● UI
● Python SDK to define Pipelines
● Visualizations
● Lineage Tracking
● ...

5



arrik.to/kubeconAMSSimplify. Accelerate. Collaborate.

The Problem

● All Pipeline Runs happen in the same namespace
○ No way to isolate secrets
○ No way to isolate data
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● Kubeflow Pipelines is NOT a K8s-native API
○ Does NOT use CRDs or Aggregated API-Server

● Kubeflow Pipelines has its own API Server and Persistence (MySQL, Object Store)
○ No isolation/authentication/authorization in initial design.
○ How do we extend it?

Pipelines
API Server

DB

Custom
Resource
Definition

Aggregated
API Server

etcd

K8s-style API
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Auth for Kubernetes APIs
Three takeaways:

1. Isolation using namespaces
2. Authentication with multiple options (OIDC, ServiceAccount, ...)
3. Authorization with Role Based Access Control (RBAC)
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VERB  /apis/GROUP/VERSION/namespaces/NAMESPACE/RESOURCETYPE/NAME

Namespace
K8s API Server

OIDC Service
Account

HTTP
Headers

Role

RoleBinding

RBAC

AuthorizationAuthenticationIsolation
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Auth for Kubernetes APIs
Kubernetes APIs:

● Built-in Resources: Pod, Deployment, PersistentVolume, etc.
● Custom Resource Definitions: Jupyter Notebook, Argo Workflow, etc.
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GET /apis/apps/v1/namespaces/istio-system/deployments/istiod

POST /apis/kubeflow.org/v1/namespaces/kubeflow-user/notebooks/

Can user sarah GET deployment istiod in namespace istio-system?

Can serviceaccount user-jupyter-notebook CREATE notebook in namespace kubeflow-user?

VERB  /apis/GROUP/VERSION/namespaces/NAMESPACE/RESOURCETYPE/NAME
ACTION on RESOURCE in NAMESPACE
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Auth for Kubeflow Pipelines - Isolation

Pipeline APIs have no isolation primitive:

● Add namespace to experiments
● Runs find their namespace from the experiment they are in
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Experiment

Pipeline 
Runs

Pipeline 
Definition

create

BEFORE:
/apis/v1beta1/experiments/{experiment_id}

AFTER:
/apis/v1beta1/experiments/{experiment_id}?resource_reference_key.type=NAMESPACE&resource_re
ference_key.id=ns1
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Auth for Kubeflow Pipelines - Authentication
● HTTP Headers

○ Kubeflow comes with a trusted Istio Ingress-Gateway proxy
● Istio mTLS

○ Difficult to use Argo with sidecar
● ServiceAccountTokens

○ TokenRequest/TokenReview API
○ WARNING! Use custom audience specifically for Pipelines
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Pipelines API 
Server

PodPodIstio 
Gateway

HTTP Headers ServiceAccountToken
(Audience: pipelines)✱

Projected
Volume:

ServiceAccount
Token

Istio

mTLS

✱ Will be 
implemented 
by Arrikto     
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Auth for Kubeflow Pipelines - Authorization
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Kubeflow Access Management Service (KFAM)

● View, Edit, Admin ACL per namespace
● Awkward way of assigning permissions
● Coarse-grained abstraction on top of K8s RBAC
● Deprecated

Can USER do ACTION on RESOURCE in NAMESPACE? 

Pipelines API Server Endpoints
KFAM

Namespace ACL

GET /apis/v1beta1/runs/{id} view

GET /apis/v1beta1/runs?querystring view

POST /apis/v1beta1/runs edit

DELETE /apis/v1beta1/runs/{id} admin

GET /apis/v1beta1/pipelines/{id} view
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Auth for Kubeflow Pipelines - Authorization
Can USER do ACTION on RESOURCE in NAMESPACE? 
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Role Based Access Control (RBAC)

● Map each API endpoint to an RBAC permission
● Use SubjectAccessReview to make authorization decisions
● Use standard Roles/RoleBindings for assigning permissions

Pipelines API Server Endpoints
RBAC

Resources Verbs

GET /apis/v1beta1/runs/{id} Runs GET

GET /apis/v1beta1/runs?querystring Runs LIST

POST /apis/v1beta1/runs Runs CREATE

DELETE /apis/v1beta1/runs/{id} Runs DELETE

GET /apis/v1beta1/pipelines/{id} Experiments GET
✱ Will be 
implemented 
by Arrikto     
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Istio Gateway
Enforces Authn

K8s API Server
Enforces Authz

Role

RoleBinding

Service Account

Pipeline

Mount extra SA token

TokenRequest
(audience: Pipelines)

Authorization: Bearer
Pipelines
API Server

DB

Execute Action

SubjectAccessReview

Istio mTLS

KUBEFLOW_USERID



Securing in-cluster traffic
Server PodClient Pod

Client 
Container

Server 
Container

Server PodClient Pod

Client 
Container

Server 
Container

Sidecar Sidecar



Securing in-cluster traffic



Multi user support for KFP

17

User 1

Centralized 
Service

Workload 1 Workload 2

Namespace 1 Namespace 2

User 2

Centralized Option

authz

Service Gateway

Service 1 Service 2

Namespace 1 Namespace 2

Workload 1 Workload 2

User 2User 1

I am thin!

Decentralized Option

Istio authz Controller

Sends request

Creates



Centralized API Server
Pros
● Lower operational and computational cost
● Possibility of building cross-namespace features like sharing

Cons
● A lot of code changes throughout all APIs



Artifacts



Decentralized UI artifact servers
Pros
● Minimal code changes
● Flexible to customize, e.g. mount volumes in user namespaces
● No operational cost increase

Cons
● Limitedly higher computational cost



Design - what is missing?
● How do we integrate with other two authentication methods securely?
● Pipeline definitions are shared -- Code is shared.
● How do we isolate Object Store?
● How do we isolate Machine Learning Metadata DB (MLMD)?



Implementation - istio

The istio lessons I learned,
                                the HARD way.



Implementation - istio
Gradual migration path enabling istio sidecar auto injection in a 
shared namespace.

A few ways to configure auto injection

● Default injection policy in the istio-sidecar-injector configmap in 
istio-system namespace (cluster scoped)

● “istio-injection: enabled” namespace label (required, but not 
default)

● `sidecar.istio.io/inject: true/false` pod annotation

Workaround: I had to add pod annotations to every pod in the shared 
namespace.



Implementation - istio
mTLS is required for namespace/service account in authorization 
rules



Implementation - istio
Information needed by authorization rules need to be populated first

● Service port name should start with its protocol, e.g. http for http 
payload related information



Implementation - istio
Takeaways as an istio learner

● Do not skip the basics
● Most authorization problems I met can be solved with just the 

“ensuring proxies enforced policies correctly” section in the huge 
“Common Problems / Security Problems” doc



Implementation - metacontroller

● The entire KFP controller fits into one single 281-line python file.
● Mounted as a configmap on a python image.

This means anyone can easily come, read and customize KFP 
controller code to accommodate for their special requirements on 
namespace setup.
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Demo
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