
Colin Sullivan

Easy, Secure, and Fast:
Using NATS.io for Streams
and Services

About Me

Colin Sullivan / @ColinSullivan1

Product Management @ Synadia.com

NATS Core maintainer since 2015

Building distributed systems for over 20 years

https://twitter.com/ColinSullivan01
https://synadia.com/

Agenda

✓ NATS Overview

✓ Streams and Services

✓ Topology

✓ Security

✓ Additional Features & Roadmap

What is NATS?
NATS is a ten year old production proven cloud-native distributed
communications system made for developers and operators who
want to spend more time doing their work and less time worrying
about how to do messaging.

✓ DNA: Performance, simplicity, security, and availability

✓ Built from the ground up to be cloud native

✓ Multiple qualities of service

✓ Support for multiple communication patterns

✓ Over 40 types of clients

Use Cases

● Cloud Messaging

✓ Services (microservices)

✓ Event/Data Streaming (observability, analytics)

✓ Command and Control

● IoT and Edge

✓ Telemetry / Sensor Data / Command and Control

● Augmenting or Replacing Legacy Messaging

CNCF Landscape

Joined CNCF as an

incubation project

in 2018

https://landscape.cncf.io

https://landscape.cncf.io

Contribution Statistics

● Over 1000 contributors, over 100 with more than 10 commits

● Over 90 public repos

○ 18,600+ GitHub stars across repos

● ~79M NATS Server Docker Hub pulls

● ~50M NATS Streaming Server Docker Hub pulls

● 2300+ Slack members

● 35 releases of the NATS server since June 2014, ~= 5/year

https://nats.devstats.cncf.io/d/9/developers-summary

https://nats.devstats.cncf.io/d/9/developers-summary

History

Created by Derek Collison

Derek has been building messaging systems
and solutions > 30 yrs

Maintained by a highly experienced
messaging team

Engaged User Community

Derek Collison
Founder and CEO at Synadia

Founder and former CEO at Apcera
CTO, Chief Architect at VMware
Architected CloudFoundry
Technical Director at Google
SVP and Chief Architect at TIBCO

End Users

Simplicity

● The server is a single binary deployable anywhere

● 10.2 MB docker image with no external dependencies

● “Text-based” protocol with a handful of verbs

PUB | HPUB | SUB | UNSUB | CONNECT | INFO | MSG | HMSG | -ERR | +OK | PING | PONG

● Low Configuration

✓ Clients only need a url and credentials

✓ Servers auto-discover

✓ You can share configuration files amongst servers

● Simple and Straightforward API

NATS Clients

Mess

Messaging Patterns:
Streams and Services

Streams and Services

● Streams
✓ A flow of data
✓ Fan out

● Services
✓ Do some work and return a result
✓ Load balanced

Application Level Patterns

✓ Request/Reply

✓ Publish/Subscribe

✓ Load Balanced Queue Subscribers

✓ New high level API Coming!

Subjects
A subject is simply a string representing an interest in data.

● Simple subject: foo or weather

● Hierarchically Tokenized: foo.bar, weather.us.co.denver

● Wildcard subscriptions

✓ foo.* matches foo.bar and foo.baz.

✓ foo.*.bar matches foo.a.bar and foo.b.bar.

✓ foo.> matches any of the above

✓ > matches everything in NATS

● Unique subjects for 1:1 addressability

Streams 1:N

NATS
Client

SUB foo

PUB foo NATS
Client

SUB foo

NATS
Client

SUB foo

NATS will fan out published messages to all
interested subscribers.

Streaming Code

Services 1:1

NATS
Client

Responder

Using unique reply subjects, clients can make requests
to services that respond only to the requestor, creating
a 1 to 1 relationship.

Request

Service Code

Load Balancing

NATS
Client

SUB foo

PUB foo NATS
Client

SUB foo

NATS
Client

SUB foo

When subscribers are grouped together in a named
queue group, NATS will randomly distribute
messages to the subscribers, allowing NATS to act as
a layer 7 load balancer for services.

Load Balancing

NATS
Client

SUB foo

PUB foo NATS
Client

SUB foo

NATS
Client

SUB foo

Load Balancing

NATS
Client

SUB foo

PUB foo NATS
Client

SUB foo

NATS
Client

SUB foo

Load Balancing

NATS
Client

SUB foo

PUB foo NATS
Client

SUB foo

NATS
Client

SUB foo

Topology

Topology Building Blocks

Server

Super Cluster

Cluster

Leaf Node

Standalone NATS Server

Multiple NATS servers routed
together acting as one component

A cluster of NATS clusters

Clients require no awareness of server topology beyond a connection URL.

A NATS server connected to a
cluster, but not part of it

Server

NATS
Client

NATS
Client

Clusters

NATS
Client

NATS
Client

Superclusters

Superclusters are clusters of clusters connected
together with gateway connections. They use a
spline based technology to ensure resiliency and
optimize traffic across clusters.

Cluster A
Cluster B

Gateway Connections

Superclusters

US-West

US-East

Asia-West

Multiple clusters can be linked together to
form vast network topologies that consider
WAN network links and latency.

Leaf Nodes

✓ A leaf node is a single NATS server extended out from a cluster or
remote server.

✓ Leaf nodes extend clusters via a hub and spoke topology.

✓ Leaf nodes allow you to bridge separate security domains.

✓ Ideal for edge computing, IoT hubs, or data centers that need to be
connected to a global, regional, or national NATS deployment.

✓ Transparently bridge on-premise and cloud deployments.

Global Deployment

Supercluster

Leaf Node
Leaf Node in a

Remote Cluster

San Diego HQ
Cluster (k8s)

Berlin Cluster (VMs)

London Cluster
(k8s)

Security

Security Basics

● Full TLS Support: CA certificates, bidirectional support, default

to most secure ciphers.
✓ Support for DN or SAN in certificates for NATS user identity

● Support for standard user/password auth

● Permissions restrict who can send and receive on what subjects

● Change these through configuration reload at runtime with zero

downtime.

● Operator Mode with NATS >= 2.0

Multi-Tenancy

Operator

Account BAccount A

User 1 User 2 User 1 User 2

Distributed Security - Trust
NATS allows you to define Operators, Accounts, and Users within a NATS

deployment.

● Operator: Root of trust for the system, e.g. An enterprise operator.

○ Create Accounts for account administrators. An account represents

an organization with a secure context within the NATS deployment,

for example a VAS system, an IT system monitoring group, a set of

microservices, etc. Account creation would likely be managed by a

central group.

● Accounts define limits and may securely expose services and streams

○ Account managers create Users with permissions

● Users have specific credentials and permissions.

Distribute Security - Accounts
● Accounts are isolated communication contexts allowing secure

multi-tenancy

● Bifurcate technology from business driven use cases
✓ Data silos are created by design, not software limitations

● Easy, Secure and Cost Effective
✓ One NATS deployment for operators to manage
✓ Decentralized - organizations can self-manage

● Share data between accounts
✓ Secure Streams and Services
✓ Only mutual agreement will permit data flow

Distributed Security - Identities

JWTs are used to represent identities in NATS
● User, Account, Cluster, or Server

User JWTs Contain
● Account NKey (Issuer)
● Public NKey (Subject)
● Friendly Name
● Permissions, limits, not-before and expiration
● NKey is a NATS Key - ED25519 key made easy

Distributed Security - NKeys
Used by the NATS Identity authentication and authorization system.

● ED25519 based encoded keys made simple

✓ Fast and resistant to side-channel attacks

✓ Sign and Verify

● NATS servers never see private keys

✓ Server sends nonce during connect then verifies the nonce signed by

the user’s private key, and user JWT signed by an account private key.

● JWT associate users with accounts and permission sets

● Managed with a the NATS nsc command line interface

Topology + Security =
Adaptive Edge Architecture

Adaptive Edge Architecture

Adaptive Edge Architecture

Adaptive Edge Architecture
Use Case Central Shared Services or Streams Remote Entity Endpoints

Connected Car Headquarters Location Services, Weather, Metrics,
Security

Vehicle Various systems within the vehicle

Manufacturing Regional, Divisional, or National
Headquarters per cluster

Analytics, QA, Schematic updates,
inventory

Factory Line Equipment

Retail Regional Headquarters per cluster Points programs, Ad rewards,
coupons, logistics

Stores, Distribution Centers Scanners, POS devices, inventory

Energy Headquarters and DR sites Power source scheduling, outage
recovery coordination, metrics

Microgrids, Wind Turbine sites, Feeder
Lines, Mobile Substations

Photovoltaic,
Turbines, power boxes, field
diagnostics, smart meters.

Aviation Each Airport hosts a cluster in the
supercluster

Weather, Socials, Air Traffic Gates, Airplanes, Luggage systems Airline systems, Gate software, Airport
Applications

Cellular/Mobile Headquarters, with many regional
clusters

Thousands of services, from call
blocking, forwarding to IoT specific
services.

Cell Towers (5g), Macrocell, Small Cell
Sites

Web and phone applications, websites

Credit Card Services Each cluster in a regional
headquarters and DR sites

Points programs, fraud detection,
country specific value-added services

Regional or by location (brick and
mortar)

Websites, Applications, POS devices.

Cruise Lines Global Supercluster Logistics, manifest management,
Passenger loyalty,

Cruise Ship Various Systems from Engine to
Inventory

Shipping Container Ships Global Supercluster Logistics, Traffic, Manifest
management, planned maintenance,

Cargo Ship Inventory management equipment,
Location telemetry

Trucking Regional / International Supercluster Dispatch Services, Maintenance, Fleet
management services, Traffic Services

Vehicle Location telemetry, component health
(engine/tire management).

Adaptive Edge Example

Airline Topology Example

Airline Account Example

Frankfurt Airport

Weather Service

ML/AI
Applications

Lufthansa

Ryanair

Accounts isolate data flowing
through NATS to create logical
silos and share only specific
services and streams.

Ryanair
Application

Airport Application

Performance and Scalability

Performance

18 million messages per second with one server, one data stream.
Up to 80 million messages per second per server with multiple data
streams.

Availability

The health and availability of the system as a whole is prioritized
over servicing any individual client or server…

✓ NATS server “selfish optimization”
→ Protects against Slow Consumers

✓ Full Mesh clustering of NATS servers

✓ Server and client connections self heal

 … this creates a NATS dial-tone, always on, always available.

Auto Discovery

● Auto-Discovery
✓ Automatically Exchange Server Topology

✓ Server ⇆ Server

✓ Server → Client

● No configuration updates
✓ Failover to auto-discovered servers

● Great for rolling upgrades

Message Delivery Guarantees

Message Guarantees

NATS supports two delivery modes providing the following
guarantees:

● At most once (Core)
✓ No guarantee of delivery - messages can be lost - applications must

detect and handle lost messages

● At least once (NATS Streaming or JetStream enabled core servers)
✓ A message will always be delivered, but in certain cases may be

delivered more than once

Exactly once is arguably unnecessary, always complex, and inevitably slow.
But due to popular demand we’ve decided to support it in JetStream.

JetStream

JetStream supports:

✓ Data at rest encryption

✓ Cleanse specific messages (GDPR)

✓ Horizontal scalability

✓ Persist Streams and replay via
Consumers

✓ At-least-once delivery

✓ Store messages and replay by time
or sequence

✓ Embedded NATS server subsystem
with an option to enable

✓ Wildcard Support

✓ NATS 2.0 Security

JetStream and NATS Streaming

NATS Streaming will continue to be supported.
✓ 50 million docker downloads

✓ Deployed in production globally

✓ Bug fixes and Security fixes until June of 2022

Moving forward...
✓ New NATS enabled applications should prefer Jetstream

✓ We will provide a migration path to use JetStream

✓ New NATS streaming development will occur in JetStream

Tracing, Monitoring, and
Kubernetes Deployments

Distributed Tracing
OpenTracing reference implementations are provided for the java (not.java repo) and go (not.go repo). Using
a simple API, encode and decode NATS messages to be traced with Jaeger.

Integrations
We’re continuing to integrate NATS with other technologies.

● Spring.io

✓ NATS Spring Boot Starter

✓ NATS Cloud Stream Binder

● NATS Kafka Bridge

✓ Support for bridging to and from Kafka topics

● NATS JMS Bridge

✓ Support for bridging to and from JMS vendors, first with IBM MQ
series

NATS Surveyor

Surveyor can monitor your entire deployment from a single

container or process paired with Prometheus and Grafana.

✓ Provides a comprehensive view of entire NATS deployment

✓ No sidecars to deploy

✓ K8s, docker compose, or bare metal deployments

✓ Run using Docker Compose

✓ Requires NATS 2.0 Security and System Credentials

NATS Surveyor

Kubernetes Deployments

● A single command line to install (NATS v2 auth included)

✓ curl -sSL https://nats-io.github.io/k8s/setup.sh | sh

● Stateful Sets (used via installer)

✓ NATS Server / NATS Streaming Server official examples

✓ NATS Operator is also changing to use StatefulSets internally

● Monitoring

✓ Surveyor Installation

https://nats-io.github.io/k8s/setup.sh

Roadmap

Questions? More info:

slack.nats.io

nats.io/community

github.com/nats-io

@nats_io

https://nats.io

info@nats.io

https://github.com/nats-io/
http://twitter.com/nats_io/
https://nats.io
https://nats.io

