
Antoine Hamon, Nephely

Do The Math: Autoscaling 
Applications with Kubernetes



About me

Antoine Hamon

Freelance, Cloud Architect (AWS, OpenStack), SRE/DevOps
Nephely

DevOps Lead @ PypeStream

@AntoineKanshi
 
https://medium.com/nephely/do-the-math-auto-scaling-microservices-applications-with-orchestrators-
d15c78c0b12a

https://github.com/nephely-io/app-autoscaling-calculator

https://twitter.com/AntoineKanshi
https://medium.com/nephely/do-the-math-auto-scaling-microservices-applications-with-orchestrators-d15c78c0b12a
https://medium.com/nephely/do-the-math-auto-scaling-microservices-applications-with-orchestrators-d15c78c0b12a
https://github.com/nephely-io/app-autoscaling-calculator


Abstract



Auto-scaling



Goals

 Scale up is fast-enough so users do not face any error (UX)

 Run the minial number of replicas needed to handle the load ($)

 Work for every given load variation

 ⇒ Fine tune the upscale & downscale thresholds
(Kubernetes has a single parameter)



Google Math Translate



Variables

Introducing some variables:

 N
u
: the number of users

 T
tot

: The ‘short period of time’

 L
u
(t): the load generated by a single user on the system (t=0 points to the 

moment when the user starts the scenario)

 L
tot

(t): the total load of the system



Hypotheses

 Load is evenly distributed across all replicas

 Restful/stateless application

 Requests timings must be shorter that the Kubernetes load check interval

 Dealing with a large number of users



Gaussian (or normal) distribution:

µ: is the expected value

σ: is the standard deviation

Getting All Gaussian



Getting All Gaussian

 ⇒ The load L
tot

(t) generated by 99.7% of N
u
, each user performing a consuming operation L

u
(t) and 

where 95.4% of them are doing it within a duration T
tot

.

σ = T
tot 

/ 4     &    µ = 3 / 4 x T
tot



Reimann sum:

f being the function to approximate
(the Gaussian in our case)

with x
k
 defined as follow:

n: is the number of subdivisions
a: is the lower bound (0)
b: is higher bound (3 / 2 x T

tot
)

Introducing Reimann



Introducing Reimann

The load formula at the given time t is the sum of every subdivision’s number of users multiplied by the user 
load function at their corresponding time:

After replacing variables and having simplified the formula, this becomes:

To finish, we will use the dichotomy algorithm to find the upscale threshold.



User Load Function

 ⚠ Impossible to have a proper mathematical representation

1. Single instance, single action. Increase the number of users until 
resources limit is reached (or when timings start to exeed expectations).

2. Devide resources per the number of users. Calculate also the average 
time of the action.

3. Create a user scenario out of previous load test figures.



Demo Time!



Best practices

 Application’ startup time should be fast

 Play with both resources request & resources limit

 Increasing the minimum number of replicas will also increase the upscale 
threshold (since the highest load increase per replica is at the beginning of 
the simulation)

 Increasing resources limitations will also increase the upscale threshold




	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

