
Wenbo Zhu, Google Inc.

Design choices behind making 
gRPC available on Web Platforms



Design choices behind gRPC-Web

Outline
• Background: “RPC” on Web platforms
• Design choices: making the (right) tradeoffs
• Roadmap: a continued process

Q&A (15 minutes)



Background

gRPC in a nutshell

Client Server

Protobuf: service definition

requestresponse

HTTP/2



RPCs on Web platforms

RPC runtime

Web APIs (XHR, Fetch …)

Web platforms: browsers, HTML5 clients, Reactive-Native … 

RPC JS API

Web applications, frameworks

HTTP/*

Proxies (forward, reverse), firewalls, gateways …

RPC Servers



(1) gRPC compatible

Due to the Web platform constraints, a different protocol has to be designed, i.e. gRPC-Web.

gRPC-compatible
• Adopt the core grpc wire-protocol (h/2)
• Introduce only minimum protocol changes to enable gRPC on Web platforms
• Only extend the protocol to support Web-specific concepts such as CORS

be future-proof, and minimize server-side complexity 



(2) Keep it simple

Limit the streaming support to only server-streaming due to Web platform constraints.

KISS
• Avoid the complexity to support protocols that require fallback, e.g. websockets
• Unlike unary request-response or server-streaming, bidi-streaming or request-streaming 

is error-prone and less scalable (over Internet), i.e. RPC is not going to solve all your 
problems.

Web APIs are evolving, e.g. Fetch/streams. 

don’t invent things we may regret in future



(3) Works everywhere

Now that we have made enough tradeoffs, we do strive to make the solution work everywhere.

Reachability
• Both browser and non-browser clients
• Older clients, e.g. IE 10
• Newer clients too, e.g. service workers

wide adoption by Google’s applications



(4) Focus on value-adds

Prioritize features that advance the development experience.

Web development
• Focus on Web applications that interact with gRPC-based micro-services vs. gRPC-Web 

being a debugging tool
• APIs, code-gen & build, TS, Node …

improve gRPC adoption with a universal development experience based on protobuf



(5) Make REST a friend

Yes, we want to benefit from the same infra that powers REST.

Web-compatible
• Server-side gateways rely on language-native Web frameworks to terminate gRPC-Web 

requests
• For protocol-agnostic features such as security, integrate, not reinvent.
• JSON support 

understand your target environments.



Current roadmap

Bidi streaming
• Adopt fetch/streams to enable request-streaming and half-duplex bidi streaming [*]
• Publish a design guideline to support full-duplex streaming with dual HTTP requests

Gateways in more languages, in addition to Swift, .NET

Security features such as XSRF, XSS, CSP.

Protobuf improvements and performance.

[*] Chrome origin trial in progress for fetch/upload streams.



Community contributions

Gateways: different languages, Envoy

Ecosystems: frameworks, different Web platforms

We want to hear your deployment experience
• https://github.com/grpc/grpc-web
• web@google.com



Q&A




